Mathematik-Nachhilfe: Aufgaben zu linearen Gleichungen, Teil 6

Fundamentale (Bau-)Prinzipien bei Bauklötzen © Daniel Bleyenberg PIXELIO www.pixelio.de

Fundamentale (Bau-)Prinzipien bei Bauklötzen © Daniel Bleyenberg PIXELIO www.pixelio.de

Inzwischen bereits ein Dauerthema im Mathematik Nachhilfe Blog stellen lineare Gleichungen dar. Das hat natürlich seine Gründe und ist demzufolge alles andere als grundlos. Außenstehende können nämlich sofort immer das Argument anführen, dass man durch das ständig Gleiche ja nichts Neues lernt! IMMER wieder lineare Gleichungen – ist ja auch immer wieder dasselbe. Es gibt hierfür aber dennoch folgende überaus plausible Gründe: Lineare Gleichungen sind die ersten in Mathe thematisierten Gleichungen. Sie stellen daher das Fundament für alle weiteren in Mathematik noch behandelt werdenden Gleichungen dar; die dort thematisierten algebraischen Gesetzmäßigkeiten sind daher auch Fundamentalgesetzmäßigkeiten/Fundamentalprinzipien; lineare Gleichungen weisen bereits viele verschiedene Aufgabentypen auf, die bei komplexeren Aufgaben wiederum auftreten; lineare Gleichungen sind sehr wichtig allgemein für das Verständnis von Gleichungen und Funktionen. Außerdem ist das hier ein Mathematik Nachhilfe Blog 😉 , die Wiederholung, die Repetitio, ist Blog-immanent 😉 . Weiterlesen

Mathematik-Nachhilfe: Zahlenmengen, Gastbeitrag

Natürliche Zahlen bei einem Kalender © I-vista PIXELIO www.pixelio.de

Natürliche Zahlen bei einem Kalender © I-vista PIXELIO www.pixelio.de

Liebe Leser,

mein Name ist Thorsten Schulz und ich bin zertifizierter Nachhilfe-Lehrer in Hannover, Umgebung und online weltweit. In diesem Gastbeitrag von mir soll es um den Stoff gehen, der in der Mathematik geformt wird, also die Zahlen. Genauer gesagt: Mengen von Zahlen. Mehr Informationen über mich und meine Arbeit finden Sie unter Online-Nachhilfe Hannover.

Jeder von uns weiß, was eine Menge ist. Im US-Film Rainman von 1988 hat der Autist Raymond, gespielt von Dustin Hoffmann, blitzschnell eine Menge Zahnstocher gezählt, die eine Serviererin versehentlich fallen ließ. Weiterlesen

Mathematik-Nachhilfe: Aufgaben zu Gleichungen mit Parametern, Teil 2

Das Fachvokabular für Mathe © Stephanie Hofschlaeger PIXELIO www.pixelio.de

Das Fachvokabular für Mathe © Stephanie Hofschlaeger PIXELIO www.pixelio.de

Die Terminologie in Mathematik ist sehr wichtig. Was? Die Terminologie! Was? Das Fachvokabular ? Was? Das Fachvokabular? Was? Die speziellen Wörter, die man im Fach Mathematik verwendet! Ach so! Versteht man wirklich gleich so oft bei bestimmten/speziellen Wörtern, die im Mathe-Unterricht gebräuchlich sind, BAHNHOF, dann sollte man schleunigst diesbezüglich seine überfälligen Hausaufgaben nachholen. Dann hat man nämlich schon Lücken im Fach Mathematik aufgebaut, die das Verständnis des weiteren dort behandelnden Lernstoffes erschweren. Ein Beispiel gefällig: Schüler und Schülerinnen müssen beispielsweise wissen, was ein Parameter ist (was schon wirklich gut ist, ist: wenn man auch den eher selten verwendeten Fachbegriff bzw. Fachwort Formvariable kennt 😉 ). Nur dann kann man sich ja auch etwas unter diesem Fachvokabular vorstellen – und schließlich gezielt eine Aufgabe lösen! Weiterlesen

Mathematik-Nachhilfe: Aufgaben zu Bruchgleichungen, Teil 5

Logik in Mathe S. © Hofschlaeger PIXELIO www.pixelio.de

Logik in Mathe S. © Hofschlaeger PIXELIO www.pixelio.de

Eine bestimmte Logik ist bei jedem Stoffgebiet in Mathe zentral. Mathematik ist ja Logik pur. Deshalb nimmt dieses Fach in der Schule auch eine sehr, sehr wichtige Stellung ein. Wie sieht nun aber beispielsweise die Logik beim Stoffgebiet Bruchgleichungen aus? Guckt man sich Bruchgleichungen an, so beginnt die Logik beim Aufstellen der Definitionsmenge der jeweiligen Aufgabe. Hiermit steht und fällt ja die Lösung der Aufgabe! Als Nächstes muss man die Gleichung dahingehend vereinfachen, dass man bei den Brüchen deren Hauptnenner bildet. Anschließend löst man die jetzt ganz normale Gleichung nach der Variablen hin auf. Zum Schluss muss man noch die Lösung mit der Definitionsmenge abgleichen und die Lösung angeben. Das ist die Logik bei Buchgleichungen – um diese Gleichungen richtig zu lösen. Weiterlesen

Mathematik-Nachhilfe: Aufgaben zu quadratischen Gleichungen, Teil 11

Der richtige Lösungsweg führt in Mathe zum Ziel © JMG PIXELIO www.pixelio.de

Der richtige Lösungsweg führt in Mathe zum Ziel © JMG PIXELIO www.pixelio.de

Es gibt bei einer quadratischen Gleichung verschiedene rechnerische Lösungsverfahren. Wendet man diese korrekt an, ergeben jene allesamt das richtige Ergebnis. So funktioniert ja Mathe! Wie gelingt das einem aber? Das Stichwort ist hier: Fleiß! Auch wenn man am Anfang vielleicht nicht zur Gänze verstanden hat, wie die p-q-Formel oder das quadratische Ergänzen funktioniert, dann sollte man auf keinen Fall „den Kopf in den Sand stecken“. Vielmehr sollte man eigenständig versuchen Aufgaben zu lösen. Die Aufgaben überprüft man dann im Unterricht oder mit den gemachten Aufgaben von KlassenkameradInnen. Irgendwann macht es dann nämlich „klick“. Das passiert aber nur, wenn man weiter intensiv die Aufgaben macht – und genau guckt, wie man mittels eines Lösungsverfahren zur Lösung einer quadratischen Gleichung kommt und was man für Fehler hierbei evtl. gemacht hat. Weiterlesen

Mathematik-Nachhilfe: Aufgaben zu linearen Ungleichungen, Teil 7

Die Kardinalregel bei Ungleichungen!!! © Thommy Weiss PIXELIO www.pixelio.de

Die Kardinalregel bei Ungleichungen!!! © Thommy Weiss PIXELIO www.pixelio.de

Die wichtigste Regel in Mathe beim Lösen von Ungleichungen ist (das gilt für lineare Ungleichungen und ebenso für alle anderen Ungleichungen): Bei einer Multiplikation mit einer negativen Zahl oder einer Division mit einer negativen Zahl dreht sich bei der Ungleichung das Ungleichheitszeichen um. Das ist superwichtig, es ist schließlich die Kardinalregel bei Ungleichungen. Macht man also z. B. ein „mal (–5)“ / „· (–5)“ so ändert sich beispielsweise das < hin zu >. Macht man hingegen ein „durch (–4)“ / „: (–4)“ so ändert sich ebenso beispielsweise das > hin zu <. Das sollte man bei Ungleichungen so schnell wie möglich verinnerlichen. Wendet man die Kardinalregel bei Ungleichungen nämlich nicht an – so ist auch die spätere Lösungsmenge definitiv falsch. Wenn man aber geschickt umformt, dann kann man sich einen Wechsel des Ungleichheitszeichens ersparen!

Weiterlesen

Mathematik-Nachhilfe: Aufgaben zum Stoffgebiet Term, Teil 13

Ein Gespräch zwischen Termen © Uwe Wagschal PIXELIO www.pixelio.de

Ein Gespräch zwischen Termen © Uwe Wagschal PIXELIO www.pixelio.de

„Was für ein Typ bist du denn?“, fragt ein Term einen anderen Term. „Ich bin ein Produkt-Term. Und du?“ „Was denkst du denn?“, erwidert jener. „Da muss ich dich erst einmal genau anschauen, dass ich das ganz genau sagen kann. Einen Moment bitte“, antwortet dieser. Ein paar Sekunden später. „Du bist eine algebraische Summe.“ „Ja, das stimmt“, entgegnet schließlich der Term dem anderen Term.

Gäbe es Gespräche unter Termen, dann könnten viele hiervon tagtäglich so vonstatten gehen. Das Ergebnis, mit welchem Term-Typ man es gerade verbal zu tun hat, würde hierbei natürlich je nach Typ unterschiedlich ausfallen – da ja normalerweise die letzte zu tätigende Rechenoperation den Typ des Terms bestimmt. Weiterlesen

Mathematik-Nachhilfe: Aufgaben zum Flächeninhalt von Vielecken, Teil 8

Fußballplatz auf dem Land © Hartmut910 PIXELIO www.pixelio.de

Fußballplatz auf dem Land © Hartmut910 PIXELIO www.pixelio.de

Beim Flächeninhalt von Vielecken im Fach Mathematik muss man entweder die Fläche exakt mittels Formel berechnen oder zeichnerisch ermitteln, bei der wiederum auch eine Rechnung gemacht werden muss. Die zwei Verfahren zum Bestimmen des Flächeninhalts unterscheiden sich hierbei in ihrer Exaktheit. Die rechnerische Methode ist immer ganz, ganz exakt, die zeichnerische nicht. Interessant hierbei ist aber, dass das zeichnerische Ermitteln des Flächeninhalts realitätskonform ist, sprich ein Abbild der Realität ist, der rechnerische Weg hingegen nicht. Kein Flächeninhalt, den man rein rechnerisch bestimmt, kommt so in der Realität 100 % identisch auch vor. Alle Flächen, die man sieht, sei es Rechtecke, Parallelogramme, Trapeze oder andere Vielecke verlaufen nämlich nicht exakt so, wie man sie am Computer (!) zeichnen kann!

Weiterlesen

Mathematik-Nachhilfe: Aufgaben zu linearen Funktionen, Teil 2

Neuigkeiten aus dem Mathe-Unterricht © Tim Reckmann PIXELIO www.pixelio.de

Neuigkeiten aus dem Mathe-Unterricht © Tim Reckmann PIXELIO www.pixelio.de

Als Schülerin und Schüler lernt man in Mathe als erste Funktionen lineare Funktionen kennen. „Das sind Geraden“, sagt ein emsiger Eleve, als er von seinen Eltern gefragt wird, was das sind. „Den Graph einer linearen Funktion nennt man Gerade“, antwortet der Lehrer bei einem Elternabend auf die gleiche Frage einer Elternhälfte. Der Lehrer muss das auch haargenau so sagen, denn die Darstellung einer linearen Funktion in einem Koordinatensystem ergibt eine Gerade. „Lineare Funktionen kann man aber nicht nur im Koordinatensystem darstellen“, ergänzt er weiter. „Lineare Funktionen weisen auch einen Funktionsterm auf, anhand dem man verschiedene Berechnungen machen kann – die auch wiederum an deren Graph ablesbar sind.“ „Aha“, hört man dann die Eltern sagen. Weiterlesen

Mathematik-Nachhilfe: Aufgaben zu Potenzen, Teil 10

Schwierig hoch 12 © Rainer Sturm PIXELIO www.pixelio.de

Schwierig hoch 12 © Rainer Sturm PIXELIO www.pixelio.de

Auch im Alltag benutzt man in seinem aktiven Wortschatz Potenzen. Das ist immer der Fall, wenn man etwas sehr Schwieriges oder eine – sagen wir mal auch in Anführungszeichen – sehr schwierige Person vor sich hat. „Die Aufgabe, die ich zu bewältigen habe, ist kompliziert hoch zwölf“, sagt ein Schüler zu einem anderen. „Die Person, mit der ich zusammenarbeiten muss, nervt mich im Quadrat“, antwortet eine Frau gegenüber ihrem Freund. Diese Aufgabe oder Person ist natürlich nicht an sich in der jeweiligen Potenz so schwierig bzw. schlimm. Dennoch empfindet ein Mensch das so – was natürlich dennoch real eine sehr schwierige Situation für diese Person ist. Am besten man ist selbst potent genug, um solche immer wieder im Leben auftretenden Situationen so gut wie möglich zu meistern. Weiterlesen