Mathematik-Nachhilfe: Aufgaben zu Potenzen, Teil 10

Schwierig hoch 12 © Rainer Sturm PIXELIO www.pixelio.de

Schwierig hoch 12 © Rainer Sturm PIXELIO www.pixelio.de

Auch im Alltag benutzt man in seinem aktiven Wortschatz Potenzen. Das ist immer der Fall, wenn man etwas sehr Schwieriges oder eine – sagen wir mal auch in Anführungszeichen – sehr schwierige Person vor sich hat. „Die Aufgabe, die ich zu bewältigen habe, ist kompliziert hoch zwölf“, sagt ein Schüler zu einem anderen. „Die Person, mit der ich zusammenarbeiten muss, nervt mich im Quadrat“, antwortet eine Frau gegenüber ihrem Freund. Diese Aufgabe oder Person ist natürlich nicht an sich in der jeweiligen Potenz so schwierig bzw. schlimm. Dennoch empfindet ein Mensch das so – was natürlich dennoch real eine sehr schwierig Situation für diese Person ist. Am besten man ist selbst potent genug, um solche immer wieder im Leben auftretenden Situationen so gut wie möglich zu meistern. Weiterlesen

Mathematik-Nachhilfe: Aufgaben zu Bruchtermen, Teil 10

Bruchterme sind super © Esther Stosch PIXELIO www.pixelio.de

Bruchterme sind super © Esther Stosch PIXELIO www.pixelio.de

Alle Aufgaben in Mathe zu Bruchtermen kann man im Prinzip schon. Alles, was man beim Bruchrechnen gelernt hat, muss man ja hier wiederum abrufen. Daher sind Bruchterme ein dankbares Stoffgebiet – wenn man schon top bei Brüchen war. Das Einzige, was wirklich bei Bruchtermen neu ist, ist die eingeschränkte Lösungsmenge sowie die auftretenden Variablen beim Bruch. Aber das Allerallerwichtigste ist: Alle Rechenoperationen sind bekannt! Das Addieren, das Subtrahieren, das Multiplizieren und das Dividieren sind schließlich zu 100 % gleich wie beim Bruchrechnen. Ebenso hat man bereits gelernt, wie man z. B. Variablen mittels des Distributivgesetzes auflöst – wenn man dieses bei Bruchtermen anwenden muss. Nichtsdestotrotz muss man natürlich beim Lösen jeder Aufgabe bei Bruchtermen hochkonzentriert sein – wie immer bei Mathe! Weiterlesen

Mathematik-Nachhilfe: Aufgaben zu linearen Gleichungen, Teil 5

Alle Gleichungen liefern ein ''wahres'' Ergebnis © M. Großmann PIXELIO www.pixelio.de

Alle Gleichungen liefern ein “wahres“ Ergebnis © M. Großmann PIXELIO www.pixelio.de

In Mathe ist die Bedeutung von Wörtern zentral, das führt man sich aber nicht immer bewusst vor Augen (wie das übrigens auch oft im realen Leben der Fall ist). Bei der Einführung von Gleichungen bzw. linearen Gleichungen (was ja die ersten im Fach Mathematik sind), bezieht sich die Bedeutung des Wortes auf die Terme rechts und links des Gleichheitszeichens („=“). Sind nämlich hierbei beide Terme gleich, also rechts und links des Gleichheitszeichens, dann ist die Gleichung auch wahr (formal gesehen). 1 = 1 oder 25 = 25 ist ja beispielsweise nichts anderes als eine wahre Aussage. Sind die Terme jedoch nicht gleich, so liefert die Gleichung eine unwahre Aussage (formal gesehen), wie zum Beispiel: 1 ≠ 2 bzw. 25 ≠ 26. Weiterlesen

Mathematik-Nachhilfe: Aufgaben zum Satz des Pythagoras, Teil 4

Der Satz des Pythagoras © S. Hofschlaeger PIXELIO www.pixelio.de

Der Satz des Pythagoras © S. Hofschlaeger PIXELIO www.pixelio.de

Bei einem rechtwinkligen Dreieck gilt der Satz des Pythagoras. Demzufolge gilt diese sehr berühmte Gesetzmäßigkeit nicht, wenn kein rechtwinkliges Dreieck vorliegt. Ist nun ein rechtwinkliges Dreieck gegeben, dann weist solch ein Dreieck immer eine Hypotenuse und zwei Katheten auf. Was ist aber was? Das ist ganz, ganz einfach – und sollte man deshalb auch nie vergessen. Die Hypotenuse ist immer die Seite im rechtwinkligen Dreieck, die sich gegenüber dem rechten Winkel befindet. Die anderen Seiten sind dann stets die Katheten, da die Hypotenuse ja immer festgelegt ist. Demzufolge ist auch stets klar, wenn man den Satz des Pythagoras an einem beliebigen rechtwinkligen Dreieck aufgestellt, was für eine Gleichung sich ergibt bzw. ergeben muss. Weiterlesen

Mathematik-Nachhilfe: Aufgaben zum Stoffgebiet Funktionen, Teil 4

Eine lineare Funktion als Graph dargestellt © Honina

Eine lineare Funktion als Graph dargestellt © Honina

Funktionen sind eindeutige Zuordnungen. Das ist ihr Charakteristikum. Ist das bei einer Funktion der Fall, dass eine eindeutige Zuordnung vorliegt, so kann man in Mathe hierzu einen Funktionsterm aufstellen. Dieser Funktionsterm gibt ganz allgemein die Zuordnung wieder. Man kann solch eine eindeutige Zuordnung jedoch nicht nur algebraisch durch einen Term bestimmen, sondern auch graphisch. Eine Funktion kann schließlich immer auch in ein Koordinatensystem eingezeichnet werden und ihr Verlauf sichtbar gemacht werden. Das nennt man den Graph einer Funktion. Daher kann man auch immer sowohl algebraisch als auch mittels eines Koordinatensystems eindeutig sagen, ob wirklich eine Funktion vorliegt – oder nicht. Es gibt in der Mathematik ja nicht nur Funktionen, das heißt, eindeutige Zuordnungen, sondern auch Relationen, uneindeutige Zuordnungen. Weiterlesen

Mathematik-Nachhilfe: Aufgaben zu quadratischen Gleichungen, Teil 10

Schule und insbesondere Mathe sind nicht schön © Alexandra H. PIXELIO www.pixelio.de

Schule und insbesondere Mathe sind nicht schön. © Alexandra H. PIXELIO www.pixelio.de

Bei quadratischen Gleichungen kann man mittels der p-q-Formel, der Mitternachtsformel oder eines quadratischen Ergänzens deren Lösungen ermitteln. Das sind ja alles bekanntermaßen Lösungsverfahren für quadratische Gleichungen. „Was aber, wenn die Lösung bereits vorliegt?“, sagt der Mathematik-Lehrer. „Schön“, sagt hier ein nicht so interessierter Mathe-Schüler. „Dann muss ich erst gar nicht rechnen.“ „Moment, das kann aber nicht sein,“ sagt hingegen eine an Mathematik eine Freude habende Schülerin. „Stimmt“, sagt schließlich der Lehrer. „Liegt eine Lösung einer quadratischen Gleichungen bereits vor, so soll man mittels eines Lösungsverfahren deren Normalform ermitteln!“, fährt dieser weiter. „Das macht man dann über den sogenannte Satz von Vieta, und zwar …“ „Mathe ist doch nie schön“, denkt sich schlussendlich der an dem Fach nicht interessierte Schüler. Weiterlesen

Mathematik-Nachhilfe: Aufgaben zu linearen Ungleichungen, Teil 6

Schritt für Schritt © Jan Wattjes PIXELIO www.pixelio.de

Schritt für Schritt © Jan Wattjes PIXELIO www.pixelio.de

Bei linearen Ungleichungen gilt es, Schritt für Schritt – wie übrigens auch bei allen Stoffgebieten in Mathe – die Aufgabe zu lösen. Die einzelnen Lösungsschritte sind hierbei natürlich je nach Aufgabe verschieden. Das ist natürlich ebenfalls bei allen Mathematik-Stoffgebieten so! Es gibt aber immer bei jedem Stoffgebiet Standartaufgaben. Daher auch bei linearen Ungleichungen. Eine Standartaufgabe ist hier, dass eine komplette lineare Ungleichung dasteht und man diese lösen muss. Zunächst fasst man alle gleichen Einzelterme rechts und links des Ungleichheitszeichens zusammen. Dann separiert man den Einzelterm mit der Variablen von dem Einzelterm ohne die Variable. Steht schließlich die Variable alleine, d. h. nur mit der Zahl/dem Faktor 1 vor der Variablen, auf einer Seite der Ungleichung und auf der anderen Seite der Einzelterm ohne Variable – dann hat man die lineare Ungleichung gelöst. Weiterlesen

Mathematik-Nachhilfe: Aufgaben zu quadratischen Funktionen, Teil 2

Die Normalparabel

Die Normalparabel

Der bekannteste Graph einer quadratischen Funktion ist die sogenannte Normalparabel. Da es hierfür in Mathe extra eine Schablone gibt, kennt man die Normalparabel normalerweise sehr gut – und deren möglichen Verläufe im Koordinatensystem. Hierfür muss man sich zuvor nur die quadratischen Funktionen genau anschauen. Dann weiß man auch, wo man die Normalparabel im Koordinatensystem einzeichnen muss. Man orientiert sich hierbei an der Funktion y = x². Das stellt die nach oben geöffnete Normalparabel, vom Koordinatenursprung ausgehend, dar. Heißt die Funktion jedoch y = x² + 4, so muss man die Funktion um vier Längeneinheiten nach oben verschieben (entlang der y-Achse). Bei der Funktion y = (x – 4)² um vier Längeneinheiten nach rechts (entlang der x-Achse). Bei der Funktion y = (x – 4)² + 4 um vier Längeneinheiten nach rechts und vier Längeneinheiten nach oben. Weiterlesen

Mathematik-Nachhilfe: Aufgaben zum Flächeninhalt von Vielecken, Teil 7

Ein rechteckiger Teppich auf einem Boden © Lupo PIXELIO www.pixelio.de

Ein rechteckiger Teppich auf einem Boden © Lupo PIXELIO www.pixelio.de

Bei der Berechnung von Flächen (dem Flächeninhalt) bei Vielecken muss man immer auf zwei Aspekte besonders Acht geben. Der erste und wichtigste Aspekt hierbei ist: die Formel zur Berechnung des Flächeninhalts eines Vielecks korrekt anzuwenden. Konkret heißt das beispielsweise: bei einem Dreieck, einem Parallelgramm oder einem Trapez die Werte korrekt in die Gleichung einzutragen. Der zweite wichtige Aspekt hierbei ist: Bevor man die Werte in die Flächeninhalts-Formel einträgt, muss man diese eventuell ALLE auf die gleiche Einheit bringen/umrechnen. Konkret heißt das, dass alle Größen beispielsweise die Einheit cm oder m vorweisen. Eigentlich ist die Berechnung eines Flächeninhalts in Mathe nicht schwer. Dennoch bleibt es ein Mathematik-Stoffgebiet – und deshalb treten hier auch immer (vor allem bei diesen beiden genannten Aspekten) Fehler auf! Weiterlesen

Mathematik-Nachhilfe: Aufgaben zu Gleichungen mit Parametern, Teil 1

Gleichungen mit Parametern (Formvariablen) © Claudia Hautumm PIXELIO www.pixelio.de

Gleichungen mit Parametern (Formvariablen) © Claudia Hautumm PIXELIO www.pixelio.de

In Mathe können Gleichungen nicht nur eine Variable vorweisen, sondern auch zwei (oder noch mehr). Solch eine Gleichung nennt man dann Gleichung mit Parameter oder Formvariable. Hierbei ist es wichtig zu wissen: Was ist die Lösungsvariable und was ist die Formvariable? Davon hängt ja entscheidend ab, nach welcher Variablen hin man die Gleichung auflösen muss (klingt logisch, oder?). Bei Formeln zur Berechnung des Flächeninhalts von Vielecken oder dem Volumen von Prismen muss man mittels Äquivalenzumformungen die Gleichung immer nach der Lösungsvariablen hin umformen. Das ist dann später eine praktische Anwendung von Gleichungen mit Parametern/Formvariablen. Hier zeigt sich aber dann auch: Jede Variable kann die Lösungsvariable sein. Je nach Aufgabenstellung kann das deshalb variieren. 😉 Weiterlesen