Mathematik-Nachhilfe: Aufgaben zu binomischen Formeln, Teil 3

 

Nadel und Faden © erysipel PIXELIO www.pixelio.de

Binomische Formel „meets“ Distributivgesetz „meets“ Minusklammer – die volle Ladung Algebra! Wenn man bei diesem „Algebra-Crossover“ stöhnt, dann ist das eher ein alarmierendes Zeichen. Dann sitzt nämlich fundamentales Mathematik-Handwerkszeug nicht so, wie es eigentlich sein sollte. Das kann man mit einem Schneider vergleichen, der seine Nähkunst nicht wirklich beherrscht, da er seine Nadel nicht richtig „im Griff“ hat. Deshalb pikst solch ein vermeintlicher Handwerker sich auch ständig. Einen ähnlichen Schmerz kann einem ein „Algebra-Crossover“ verursachen – wenn man die hier abzurufenden Regeln nicht verinnerlicht hat. Dann schmerzt nämlich ständig die schlechte Note, die man fortwährend in Mathe mit ziemlicher Sicherheit einfährt. Da sowohl kein Schneider äußerlich als auch kein Schüler innerlich gerne „blutet“, muss man das berufsbedingte bzw. fachbedingte Handwerkszeug tipptopp können. Irgendwelche schmerzhaften Wunden aufgrund der zu bewältigenden Mathe-Materie beim Schüler oder wegen des zu bewältigenden Stoff-Materials beim Schneider kommen sodann erst gar nicht auf. „Mathematik-Nachhilfe: Aufgaben zu binomischen Formeln, Teil 3“ weiterlesen

Mathematik-Nachhilfe: Aufgaben zu linearen Gleichungen, Teil 1

Heute Nachhilfe © flown PIXELIO www.pixelio.de

Hat man verstanden, wie man lineare Gleichungen korrekt löst, dann wird man auch mit ziemlicher Sicherheit schwierigere Gleichungen in Mathe „knacken“ können. Das Entscheidende beim schrittweisen Lösen von Gleichungen beherrscht man dann nämlich schon – die sogenannten Äquivalenzumformungen. Das sind bei einer Gleichung Umformungen, bei denen sich die Lösungsmenge der Ursprungsgleichung/Ausgangsgleichung nicht ändert (Mathematik-Nachhilfe-Hinweis: Siehe hierzu auch zu dem Stoffgebiet Gleichungen den Unterpunkt 3 „Äquivalenzumformungen bei Gleichungen“ an). Löst man derart eine lineare Gleichung auf, so weiß man dann auch das eindeutige Ergebnis zu „interpretieren“, sprich, welche Art von Lösung genau vorliegt. Und das wird einem ebenso bei allen weiteren Gleichungen äußerst hilfreich sein! Schließlich muss man in höheren Klassenstufen oftmals verschiedene Gleichungen gleichsetzen – was ein notwendiges Bestimmungsmerkmal von Schnittpunkten bei unterschiedlichen Funktionen ist! Daher wird man sich in Mathe bis zum Abitur mit Gleichungen „herumschlagen“ müssen, da sich speziell in der Oberstufe bei der Analysis alles um Funktionen dreht. „Mathematik-Nachhilfe: Aufgaben zu linearen Gleichungen, Teil 1“ weiterlesen

Mathematik-Nachhilfe: Aufgaben zum Stoffgebiet Term, Teil 6

 

Zwei Klammern © Paul Georg Meister PIXELIO www.pixelio.de

Übung macht den Meister. Das gilt ganz besonders im Fach Mathe für das Ausmultiplizieren von Termen. Denn gerade beim Ausmultiplizieren passieren häufig Algebra-Fehler, da hierbei einiges beachtet werden muss, nämlich die richtige Anwendung des Distributivgesetzes/Verteilungsgesetzes, der Vorzeichenregel bei Produkten sowie der Potenzgesetze. Die erhöhte Fehlerquelle beim Ausmultiplizieren hat daher ihren Grund, da verschiedene Algebra-Kenntnisse „gleichzeitig“ auftreten – und natürlich eine korrekte Umsetzung erfahren müssen. Noch schwieriger wird das Ganze, wenn das Distributivgesetz/Verteilungsgesetz auf zwei Klammern angewandt werden muss, da dann mehr Terme miteinander algebraisch kombiniert werden müssen. „Fallstricke“ beim Ausmultiplizieren entgeht man daher nur, wenn man zigfach verschiedene solcher Klammern aufgelöst hat – und durch das kontinuierliche Üben schließlich eine „blinde“ Routine entstanden ist. Hierfür muss sich das Distributivgesetz/Verteilungsgesetz gewissermaßen ins Gedächtnis einbrennen. „Mathematik-Nachhilfe: Aufgaben zum Stoffgebiet Term, Teil 6“ weiterlesen

Mathematik-Nachhilfe: Aufgaben zu binomischen Formeln, Teil 1

 

Das-Abitur – der höchste Schulabschluss in Deutschland © S. Hofschlaeger PIXELIO www.pixelio.de

Eine überaus wichtige algebraische Gesetzmäßigkeit stellen die binomischen Formeln dar, da diese ab der 8. Klasse in Mathe immer wieder vorkommen und somit bis zum MSA oder Abi von Schülerinnen und Schülern stets abgerufen werden können müssen. Daher ist ein gewissermaßen blindes Beherrschen der binomischen Formeln Pflicht. Ansonsten ist ein Algebra-Desaster vorprogrammiert. Denn dann kann man mit hoher Wahrscheinlichkeit auch andere algebraische Umformungen nicht korrekt – wodurch sich der komplette Rechenweg verkomplizieren oder gar im schlimmsten Fall komplett falsch sein kann. Verständlicherweise frustet beides gleich stark – und vergellt einem den Spaß an Mathe gänzlich, da die Note in Mathe dann auch  „im Keller“ beziehungsweise (wie man in Berlin eher sagt) „im Souterrain“ angekommen ist. So weit sollte es in Mathematik aber erst gar nicht kommen! „Mathematik-Nachhilfe: Aufgaben zu binomischen Formeln, Teil 1“ weiterlesen

Mathematik-Nachhilfe: Aufgaben zum Satz des Pythagoras, Teil 1

 

Die berühmte Mathe-Gesetzmäßigkeit: der Satz-des Pythagoras © S. Hofschlaeger PIXELIO www.pixelio.de

Eine Gesetzmäßigkeit aus dem Mathematik-Unterricht vergessen viele Menschen ihr Leben lang nicht mehr – den „Satz des Pythagoras“. Der Grund hierfür ist aber bestimmt nicht in einem „mathematischen“ Trauma zu finden, den diese Mathe-Gesetzmäßigkeit bei den einstigen Schülern hervorrief. Denn der Satz des Pythagoras stellt für einen „nicht gerade auf den Kopf gefallenen“ Schüler kein allzu schwieriges Mathe-Stoffgebiet dar. Demzufolge sind irgendwelche psychosomatischen „Folgeschäden“ aufgrund dieser mathematischen Gesetzmäßigkeit auf jeden Fall ausgeschlossen. Vielmehr liegt der Nichtvergessenkönnen-Grund nämlich gerade in der großen Einfachheit und Unkompliziertheit des Satzes begründet. Schließlich muss man sich beim Satz des Pythagoras nur eine überaus einprägsame Gleichung merken – und zwar a² + b² = c². „Mathematik-Nachhilfe: Aufgaben zum Satz des Pythagoras, Teil 1“ weiterlesen