Mathematik-Nachhilfe: Aufgaben zu linearen Ungleichungen, Teil 7

Die Kardinalregel bei Ungleichungen!!! © Thommy Weiss PIXELIO www.pixelio.de

Die Kardinalregel bei Ungleichungen!!! © Thommy Weiss PIXELIO www.pixelio.de

Die wichtigste Regel in Mathe beim Lösen von Ungleichungen ist (das gilt für lineare Ungleichungen und ebenso für alle anderen Ungleichungen): Bei einer Multiplikation mit einer negativen Zahl oder einer Division mit einer negativen Zahl dreht sich bei der Ungleichung das Ungleichheitszeichen um. Das ist superwichtig, es ist schließlich die Kardinalregel bei Ungleichungen. Macht man also z. B. ein „mal (–5)“ / „· (–5)“ so ändert sich beispielsweise das < hin zu >. Macht man hingegen ein „durch (–4)“ / „: (–4)“ so ändert sich ebenso beispielsweise das > hin zu <. Das sollte man bei Ungleichungen so schnell wie möglich verinnerlichen. Wendet man die Kardinalregel bei Ungleichungen nämlich nicht an – so ist auch die spätere Lösungsmenge definitiv falsch. Wenn man aber geschickt umformt, dann kann man sich einen Wechsel des Ungleichheitszeichens ersparen!

Weiterlesen

Please follow and like us:

Mathematik-Nachhilfe: Aufgaben zum Stoffgebiet Term, Teil 13

Ein Gespräch zwischen Termen © Uwe Wagschal PIXELIO www.pixelio.de

Ein Gespräch zwischen Termen © Uwe Wagschal PIXELIO www.pixelio.de

„Was für ein Typ bist du denn?“, fragt ein Term einen anderen Term. „Ich bin ein Produkt-Term. Und du?“ „Was denkst du denn?“, erwidert jener. „Da muss ich dich erst einmal genau anschauen, dass ich das ganz genau sagen kann. Einen Moment bitte“, antwortet dieser. Ein paar Sekunden später. „Du bist eine algebraische Summe.“ „Ja, das stimmt“, entgegnet schließlich der Term dem anderen Term.

Gäbe es Gespräche unter Termen, dann könnten viele hiervon tagtäglich so vonstatten gehen. Das Ergebnis, mit welchem Term-Typ man es gerade verbal zu tun hat, würde hierbei natürlich je nach Typ unterschiedlich ausfallen – da ja normalerweise die letzte zu tätigende Rechenoperation den Typ des Terms bestimmt. Weiterlesen

Please follow and like us:

Mathematik-Nachhilfe: Aufgaben zum Flächeninhalt von Vielecken, Teil 8

Fußballplatz auf dem Land © Hartmut910 PIXELIO www.pixelio.de

Fußballplatz auf dem Land © Hartmut910 PIXELIO www.pixelio.de

Beim Flächeninhalt von Vielecken im Fach Mathematik muss man entweder die Fläche exakt mittels Formel berechnen oder zeichnerisch ermitteln, bei der wiederum auch eine Rechnung gemacht werden muss. Die zwei Verfahren zum Bestimmen des Flächeninhalts unterscheiden sich hierbei in ihrer Exaktheit. Die rechnerische Methode ist immer ganz, ganz exakt, die zeichnerische nicht. Interessant hierbei ist aber, dass das zeichnerische Ermitteln des Flächeninhalts realitätskonform ist, sprich ein Abbild der Realität ist, der rechnerische Weg hingegen nicht. Kein Flächeninhalt, den man rein rechnerisch bestimmt, kommt so in der Realität 100 % identisch auch vor. Alle Flächen, die man sieht, sei es Rechtecke, Parallelogramme, Trapeze oder andere Vielecke verlaufen nämlich nicht exakt so, wie man sie am Computer (!) zeichnen kann!

Weiterlesen

Please follow and like us:

Mathematik-Nachhilfe: Aufgaben zu linearen Funktionen, Teil 2

Neuigkeiten aus dem Mathe-Unterricht © Tim Reckmann PIXELIO www.pixelio.de

Neuigkeiten aus dem Mathe-Unterricht © Tim Reckmann PIXELIO www.pixelio.de

Als Schülerin und Schüler lernt man in Mathe als erste Funktionen lineare Funktionen kennen. „Das sind Geraden“, sagt ein emsiger Eleve, als er von seinen Eltern gefragt wird, was das sind. „Den Graph einer linearen Funktion nennt man Gerade“, antwortet der Lehrer bei einem Elternabend auf die gleiche Frage einer Elternhälfte. Der Lehrer muss das auch haargenau so sagen, denn die Darstellung einer linearen Funktion in einem Koordinatensystem ergibt eine Gerade. „Lineare Funktionen kann man aber nicht nur im Koordinatensystem darstellen“, ergänzt er weiter. „Lineare Funktionen weisen auch einen Funktionsterm auf, anhand dem man verschiedene Berechnungen machen kann – die auch wiederum an deren Graph ablesbar sind.“ „Aha“, hört man dann die Eltern sagen. Weiterlesen

Please follow and like us:

Mathematik-Nachhilfe: Aufgaben zu Potenzen, Teil 10

Schwierig hoch 12 © Rainer Sturm PIXELIO www.pixelio.de

Schwierig hoch 12 © Rainer Sturm PIXELIO www.pixelio.de

Auch im Alltag benutzt man in seinem aktiven Wortschatz Potenzen. Das ist immer der Fall, wenn man etwas sehr Schwieriges oder eine – sagen wir mal auch in Anführungszeichen – sehr schwierige Person vor sich hat. „Die Aufgabe, die ich zu bewältigen habe, ist kompliziert hoch zwölf“, sagt ein Schüler zu einem anderen. „Die Person, mit der ich zusammenarbeiten muss, nervt mich im Quadrat“, antwortet eine Frau gegenüber ihrem Freund. Diese Aufgabe oder Person ist natürlich nicht an sich in der jeweiligen Potenz so schwierig bzw. schlimm. Dennoch empfindet ein Mensch das so – was natürlich dennoch real eine sehr schwierige Situation für diese Person ist. Am besten man ist selbst potent genug, um solche immer wieder im Leben auftretenden Situationen so gut wie möglich zu meistern. Weiterlesen

Please follow and like us:

Mathematik-Nachhilfe: Aufgaben zum Stoffgebiet Funktionen, Teil 4

Eine lineare Funktion als Graph dargestellt © Honina

Eine lineare Funktion als Graph dargestellt © Honina

Funktionen sind eindeutige Zuordnungen. Das ist ihr Charakteristikum. Ist das bei einer Funktion der Fall, dass eine eindeutige Zuordnung vorliegt, so kann man in Mathe hierzu einen Funktionsterm aufstellen. Dieser Funktionsterm gibt ganz allgemein die Zuordnung wieder. Man kann solch eine eindeutige Zuordnung jedoch nicht nur algebraisch durch einen Term bestimmen, sondern auch graphisch. Eine Funktion kann schließlich immer auch in ein Koordinatensystem eingezeichnet werden und ihr Verlauf sichtbar gemacht werden. Das nennt man den Graph einer Funktion. Daher kann man auch immer sowohl algebraisch als auch mittels eines Koordinatensystems eindeutig sagen, ob wirklich eine Funktion vorliegt – oder nicht. Es gibt in der Mathematik ja nicht nur Funktionen, das heißt, eindeutige Zuordnungen, sondern auch Relationen, uneindeutige Zuordnungen. Weiterlesen

Please follow and like us:

Mathematik-Nachhilfe: Aufgaben zu quadratischen Gleichungen, Teil 10

Schule und insbesondere Mathe sind nicht schön © Alexandra H. PIXELIO www.pixelio.de

Schule und insbesondere Mathe sind nicht schön. © Alexandra H. PIXELIO www.pixelio.de

Bei quadratischen Gleichungen kann man mittels der p-q-Formel, der Mitternachtsformel oder eines quadratischen Ergänzens deren Lösungen ermitteln. Das sind ja alles bekanntermaßen Lösungsverfahren für quadratische Gleichungen. „Was aber, wenn die Lösung bereits vorliegt?“, sagt der Mathematik-Lehrer. „Schön“, sagt hier ein nicht so interessierter Mathe-Schüler. „Dann muss ich erst gar nicht rechnen.“ „Moment, das kann aber nicht sein,“ sagt hingegen eine an Mathematik eine Freude habende Schülerin. „Stimmt“, sagt schließlich der Lehrer. „Liegt eine Lösung einer quadratischen Gleichungen bereits vor, so soll man mittels eines Lösungsverfahren deren Normalform ermitteln!“, fährt dieser weiter. „Das macht man dann über den sogenannte Satz von Vieta, und zwar …“ „Mathe ist doch nie schön“, denkt sich schlussendlich der an dem Fach nicht interessierte Schüler. Weiterlesen

Please follow and like us:

Mathematik-Nachhilfe: Aufgaben zu linearen Ungleichungen, Teil 6

Schritt für Schritt © Jan Wattjes PIXELIO www.pixelio.de

Schritt für Schritt © Jan Wattjes PIXELIO www.pixelio.de

Bei linearen Ungleichungen gilt es, Schritt für Schritt – wie übrigens auch bei allen Stoffgebieten in Mathe – die Aufgabe zu lösen. Die einzelnen Lösungsschritte sind hierbei natürlich je nach Aufgabe verschieden. Das ist natürlich ebenfalls bei allen Mathematik-Stoffgebieten so! Es gibt aber immer bei jedem Stoffgebiet Standartaufgaben. Daher auch bei linearen Ungleichungen. Eine Standartaufgabe ist hier, dass eine komplette lineare Ungleichung dasteht und man diese lösen muss. Zunächst fasst man alle gleichen Einzelterme rechts und links des Ungleichheitszeichens zusammen. Dann separiert man den Einzelterm mit der Variablen von dem Einzelterm ohne die Variable. Steht schließlich die Variable alleine, d. h. nur mit der Zahl/dem Faktor 1 vor der Variablen, auf einer Seite der Ungleichung und auf der anderen Seite der Einzelterm ohne Variable – dann hat man die lineare Ungleichung gelöst. Weiterlesen

Please follow and like us:

Mathematik-Nachhilfe: Aufgaben zu quadratischen Funktionen, Teil 2

Die Normalparabel

Die Normalparabel

Der bekannteste Graph einer quadratischen Funktion ist die sogenannte Normalparabel. Da es hierfür in Mathe extra eine Schablone gibt, kennt man die Normalparabel normalerweise sehr gut – und deren möglichen Verläufe im Koordinatensystem. Hierfür muss man sich zuvor nur die quadratischen Funktionen genau anschauen. Dann weiß man auch, wo man die Normalparabel im Koordinatensystem einzeichnen muss. Man orientiert sich hierbei an der Funktion y = x². Das stellt die nach oben geöffnete Normalparabel, vom Koordinatenursprung ausgehend, dar. Heißt die Funktion jedoch y = x² + 4, so muss man die Funktion um vier Längeneinheiten nach oben verschieben (entlang der y-Achse). Bei der Funktion y = (x – 4)² um vier Längeneinheiten nach rechts (entlang der x-Achse). Bei der Funktion y = (x – 4)² + 4 um vier Längeneinheiten nach rechts und vier Längeneinheiten nach oben. Weiterlesen

Please follow and like us:

Mathematik-Nachhilfe: Aufgaben zum Flächeninhalt von Vielecken, Teil 7

Ein rechteckiger Teppich auf einem Boden © Lupo PIXELIO www.pixelio.de

Ein rechteckiger Teppich auf einem Boden © Lupo PIXELIO www.pixelio.de

Bei der Berechnung von Flächen (dem Flächeninhalt) bei Vielecken muss man immer auf zwei Aspekte besonders Acht geben. Der erste und wichtigste Aspekt hierbei ist: die Formel zur Berechnung des Flächeninhalts eines Vielecks korrekt anzuwenden. Konkret heißt das beispielsweise: bei einem Dreieck, einem Parallelgramm oder einem Trapez die Werte korrekt in die Gleichung einzutragen. Der zweite wichtige Aspekt hierbei ist: Bevor man die Werte in die Flächeninhalts-Formel einträgt, muss man diese eventuell ALLE auf die gleiche Einheit bringen/umrechnen. Konkret heißt das, dass alle Größen beispielsweise die Einheit cm oder m vorweisen. Eigentlich ist die Berechnung eines Flächeninhalts in Mathe nicht schwer. Dennoch bleibt es ein Mathematik-Stoffgebiet – und deshalb treten hier auch immer (vor allem bei diesen beiden genannten Aspekten) Fehler auf! Weiterlesen

Please follow and like us: