Mathematik-Nachhilfe: Aufgaben zum Stoffgebiet Statistik, Teil 3

Ein Origami-Kranich © Günter Rehfeld PIXELIO www.pixelio.de

Den Begriff der Spannweite gibt es nicht nur in der Mathematik bzw. in der Statistik. Bevor man im Mathe-Unterricht die Spannweite und deren Definition kennenlernt und hierzu Aufgaben bewältigt, hat man nämlich oftmals schon dieses Wort benutzt. Bei den Adlern, den Königen der Luft, ist die Spannweite gerade ja das Kriterium für deren Superlativ „die größten Vögel“ zu sein. Dadurch hat man wiederum zumindest schon eine Ahnung (wenn nicht so gar eine Kenntnis davon), wie man die Spannweite in der Mathematik bzw. in der Statistik bestimmen kann. Das ist doch schön! Welcher Vogel hingegen „der Größte“ in Deutschland ist, ist hingegen schwierig zu beantworten. Welches Kriterium zieht man hierfür heran? Die Spannweite (Bartgeier), die Körpergröße (Kranich) oder das majestätische Schweben in der Luft (Stein- oder Seeadler)? Hier verlässt man nun die Mathematik und begibt sich in die philosophische Betrachtung der Welt. „Mathematik-Nachhilfe: Aufgaben zum Stoffgebiet Statistik, Teil 3“ weiterlesen

Mathematik-Nachhilfe: Aufgaben zum Dreisatz, Teil 2

Bio-Eier in idyllischer Umgebung M. Großmann_pixelio.de

Proportional ist ein sehr wichtiges Wort in der Mathematik. Vielen Aufgaben in Mathe liegen nämlich sogenannte proportionale Zuordnungen zugrunde. Was bedeutet aber das Wort proportional genau? Am einfachsten kann man sich das mittels eines Vergleichs vor Augen führen, zum Beispiel bei einem Produkt aus dem Supermarkt. 6 Bio-Eier (natürlich Freilandhaltung) kosten dort beispielsweise 2,10 €. 12 Bio-Eier kosten dann – 4,20 € (also doppelt so viel). Es liegt schließlich eine proportionale Zuordnung vor, d. h. die zugeordneten Größen (hier Bio-Eier → Preis) stehen in einem gleichen Verhältnis zueinander. Das ist sehr praktisch. So kann man schließlich über den sogenannten Dreisatz, der auf proportionalen Zuordnungen fußt, jegliche beliebe Zuordnung berechnen – wie beispielsweise 1 Bio-Ei kostet (wenn man es einzeln im Supermarkt kaufen könnte) oder 105 usw. „Mathematik-Nachhilfe: Aufgaben zum Dreisatz, Teil 2“ weiterlesen

Mathematik-Nachhilfe: Aufgaben zum Stoffgebiet Prismen, Teil 2

Das Aquarium – ein Prisma für Zierfische © Steve Weißflog PIXELIO www.pixelio.de

Bei einem Prisma gilt das Gleiche wie bei einem speziellen Viereck. Es können bestimmte Formeln herangezogen werden, um innerhalb einer Aufgabe die gesuchte Größe exakt zu bestimmen. Ein Prisma ist ja auch ein spezieller Körper, der zwei zueinander parallele und kongruente Flächen vorweist. Ein Quadrat, ein Rechteck, ein Parallelogramm oder eine Trapez sind ebenso ganz spezielle Flächen, die jeweils bestimmte Besonderheiten innerhalb ihrer Fläche haben. Das kann man in Mathe nutzen, indem man bei Prismen und speziellen Vierecken Gesetzmäßigkeiten via Formel wiedergegeben kann. Da Prismen dreidimensionale Körper sind, sind natürlich die hier durchzuführenden Rechenoperationen aber auch etwas schwieriger als bei zweidimensionalen Flächen. So ist nun mal die Mathematik! „Mathematik-Nachhilfe: Aufgaben zum Stoffgebiet Prismen, Teil 2“ weiterlesen

Mathematik-Nachhilfe: Zahlenmengen, Gastbeitrag

Natürlich Zahlen bei einem Kalender © I-vista PIXELIO www.pixelio.de

Liebe Leser,

mein Name ist Thorsten Schulz und ich bin zertifizierter Nachhilfe-Lehrer in Hannover, Umgebung und online weltweit. In diesem Gastbeitrag von mir soll es um den Stoff gehen, der in der Mathematik geformt wird, also die Zahlen. Genauer gesagt: Mengen von Zahlen. Mehr Informationen über mich und meine Arbeit finden Sie unter Online-Nachhilfe Hannover.

Jeder von uns weiß, was eine Menge ist. Im US-Film Rainman von 1988 hat der Autist Raymond, gespielt von Dustin Hoffmann, blitzschnell eine Menge Zahnstocher gezählt, die eine Serviererin versehentlich fallen ließ. „Mathematik-Nachhilfe: Zahlenmengen, Gastbeitrag“ weiterlesen

Mathematik­-Nachhilfe: Aufgaben zum Flächeninhalt von Vielecken, Teil 8

Fußballplatz auf dem Land © Hartmut910 PIXELIO www.pixelio.de

Beim Flächeninhalt von Vielecken im Fach Mathematik muss man entweder die Fläche exakt mittels Formel berechnen oder zeichnerisch ermitteln, bei dem wiederum auch eine Rechnung gemacht werden muss. Die zwei Verfahren zum Bestimmen des Flächeninhaltes unterscheiden sich hierbei in ihrer Exaktheit. Die rechnerische Methode ist immer ganz, ganz exakt, die zeichnerische nicht. Interessant hierbei ist aber, dass das zeichnerische Ermitteln des Flächeninhalts realitätskonform ist, sprich ein Abbild der Realität ist, der rechnerische Weg hingegen nicht. Kein Flächeninhalt, den man rein rechnerisch bestimmt, kommt so in der Realität auch 100 % identisch auch so vor. Alle Flächen, die man sieht, sei es Rechtecke, Parallelogramme, Trapeze oder andere Vielecke verlaufen nämlich nicht exakt so wie man sie am Computer (!) zeichnen kann! „Mathematik­-Nachhilfe: Aufgaben zum Flächeninhalt von Vielecken, Teil 8“ weiterlesen