Mathematik-Nachhilfe: Aufgaben zu Bruchgleichungen, Teil 4

Stop! Hier ist etwas falsch! © Wortinspektor.com PIXELIO www.pixelio.de

Bei Bruchgleichungen kann man sich leicht verrechnen, wenn man nicht ganz konzentriert ist und/oder die Rechenregeln nicht besonders gut kann. Dadurch entsteht dann im Nu eine Bruchgleichungen-Mutation – und ein Bruchgleichungen-Monster. Das ist kein Scherz! Die Gleichung kann sich nämlich bereits bei einem kleinen Fehlerchen entschieden verkomplizieren. Und vor einem steht plötzlich ein Bruchgleichungen-Monster! Hier bekommt man als Schülerin oder Schüler bereits einen „Vorgeschmack“ auf mögliche Algebra-Ungetüme in der Oberstufe. Terme, die hier bereits aufgrund einer mangelhaften Rechenkompetenz fies „mutieren“ können, können später zu einem Mutations-Godzilla werden. Daher sollte man rechtzeitig die richtigen Schlüsse ziehen, wenn es bereits bei Bruchgleichungen bei einem entschieden hakt. Eine temporäre/kurzfristige Nachhilfe kann hier beispielsweise sehr hilfreich sein – und jegliche Mutationsmonster im Nu wieder verjagen! „Mathematik-Nachhilfe: Aufgaben zu Bruchgleichungen, Teil 4“ weiterlesen

Mathematik-Nachhilfe: Aufgaben zum Stoffgebiet Prismen, Teil 1

Würfel © Gisela Peter PIXELIO www.pixelio.de

Irgendwann geht es in der Schule in Mathe auch in der Geometrie weiter. Das finden viele Schülerinnen und Schüler zwar urst (Ostdeutsch für „sehr“) langweilig, denn in Mathematik macht, wenn überhaupt, eigentlich Rechnen, Rechnen und noch einmal Rechnen Spaß. Geometrie setzt man eher mit Malen und Zeichnen gleich. Daher ist der Spaßfaktor auch bei vielen SchülerInnen gleich null. Wie dem auch sei. Ab der 8. Klasse muss man jedenfalls in Mathe nicht nur ein beliebiges Viereck zeichnen können, sondern auch Körper – dreidimensionale Figuren. Ja, so etwas gibt es leider auch! Wir Menschen leben ja schließlich in einem Raum und nicht auf einer Scheibe! Das Mittelalter und die Antike hat man schließlich auch in der Mathematik hinter sich gelassen. „Mathematik-Nachhilfe: Aufgaben zum Stoffgebiet Prismen, Teil 1“ weiterlesen

Mathematik-Nachhilfe: Oberfläche und Volumen von Pyramiden, Gastbeitrag

Oberfläche und Volumen von Pyramiden sind Teil der Raumgeometrie. Wie aber berechnet man das Volumen und die Oberfläche von Pyramiden am unkompliziertesten? Welche Formeln benötigt man dazu und an welcher Stelle muss man mit dem Satz des Pythagoras rechnen? Eine Reihe von Fragen also, die wir im Folgenden beantworten wollen. Ein spezielles Augenmerk dabei werden wir auf die häufigsten Fehler legen, die Schülern in Klassenarbeiten immer wieder unterlaufen und mit welchen Strategien man sie am besten verhindern kann. Sehen wir uns zunächst einmal zwei Pyramiden an:

Schrägbild einer Pyramide

„Mathematik-Nachhilfe: Oberfläche und Volumen von Pyramiden, Gastbeitrag“ weiterlesen

Mathematik-Nachhilfe: Aufgaben zum Dreisatz, Teil 1

Kapitalanlage Eigenheim © Michael Grabscheit PIXELIO www.pixelio.de

Häuslebauer, Kapitalanleger und Sparfüchse greifen für ihre geldlichen Angelegenheiten häufig auf eine Mathe-Gesetzmäßigkeit zurück: auf den Dreisatz. Das liegt nicht daran, dass diese Personengruppen ein besonderes Faible für Mathematik haben und insbesondere für den Dreisatz. Hierfür gibt es zweierlei andere – ganz simple – Gründe. Der Dreisatz ist alles andere als kompliziert und bei Geld-Dingen, denen oft proportionale Verhältnisse zugrunde liegen, jederzeit anwendbar. Daher ziehen ihn „Geldoptimierer“ gerne und oft heran, um einen genauen Überblick über ihre geldlichen Angelegenheiten zu bekommen. Ein proportionaler Zuwachs an Geld oder eine proportionale Abnahme bei einem Rabatt oder einer ähnlichen Verbillungsmaßnahme von Produkten/Waren kann mittels des Dreisatzes im Nu ermittelt werden – und Häuslebauer, Kapitalanleger und Sparfüchsen ein emotionales Tageshoch bescheren. „Mathematik-Nachhilfe: Aufgaben zum Dreisatz, Teil 1“ weiterlesen

Mathematik-Nachhilfe: Aufgaben zum Flächeninhalt von Vielecken, Teil 4

 

Ein Baum-Trapez © poldy PIXELIO www.pixelio.de

Eine Flächenberechnung muss man in Mathematik stets an besonderen Vielecken durchführen. Die Fläche von besonderen Vielecken, wie beispielsweise von einem Rechteck, einem Parallelogramm, einem Trapez oder einem Drachenviereck, kann man in Mathe ja mittels einer Formel haargenau berechnen. Das Gleiche gilt übrigens für jedes Dreieck. Vor einer Berechnung ist es immer wichtig, dass alle Größenangaben dieselbe Einheit vorweisen. Auch muss man die Formel zur Berechnung der gesuchten Größe gegebenenfalls umformen. Jede Formel zur Lösung von besonderen Vielecken sowie von jedem Dreieck stellt ja nichts anderes als eine Gleichung dar. Mittels Äquivalenzumformungen kann man diese dann jeweils zu der gesuchten Größe hin umformen. „Mathematik-Nachhilfe: Aufgaben zum Flächeninhalt von Vielecken, Teil 4“ weiterlesen

Mathematik-Nachhilfe: Aufgaben zur Punktspiegelung, Teil 2

 

Die Flagge von Costa Rica an einer Schule ©-Dieter Schütz PIXELIO www.pixelio.de

Im Alltag gibt es immer mal wieder vorkommende Phänomene aus dem Mathematik-Unterricht. Ein gutes Beispiel hierfür ist die Punktspiegelung. Viele Automarken, noch mehr Flaggen sowie einige Verkehrsschilder sind nämlich punktsymmetrisch. In der Sprache der Mathematik heißt das, dass bei diesen Zeichen oder Symbolen ein Symmetriezentrum M vorliegt, an dem jeder Symmetriepartner mit dem anderen zusammenfällt, und zwar bei einer 180º-Drehung bzw. einer Halbdrehung. Daher kann man bei solchen Zeichen oder Symbolen recht einfach feststellen, ob eine Punktsymmetrie vorliegt. Das Gleiche gilt für das Zeichnen von punktsymmetrischen Punkten oder Flächen in der Mittelstufe in Mathe. Punktsymmetrische Figuren zu zeichnen, ist nämlich kinderleicht. Auf eine andere Art muss man dies dann wiederum in der Oberstufe abrufen, und zwar bei der Analysis. Hier können nämlich punktsymmetrische Funktionen zum Ursprung auftreten. Die Punktspiegelung ist daher auch im Fach Mathe immer mal wieder vorkommend. „Mathematik-Nachhilfe: Aufgaben zur Punktspiegelung, Teil 2“ weiterlesen

Mathematik-Nachhilfe: Aufgaben zur Punktspiegelung, Teil 1

 

Das Brettspiel Halma © Karin Wuelfing PIXELIO www.pixelio.de

Ohne es oft zu wissen, sind wir um uns herum von Punktsymmetrien umgeben. Der Schilderwald im Straßenverkehr hat vielfach eine punktsymmetrische (und auch achsensymmetrische) Symbolik. Das Gleiche gilt für Spielkarten und Spielflächen sowie im Stile eines englischen Landschaftsgarten angelegte Parkflächen. Aber auch unser Alphabet besteht aus Buchstaben, die eine Punktsymmetrie vorweisen. Wie erkennt man aber diese bzw. wann genau ist etwas punktsymmetrisch? In der Mathematik ist eine Punktsymmetrie nichts anderes als eine Punktspiegelung. Jeder Punkt einer bestimmten Figur wird mittels Halbdrehung (180 º) an einem bestimmten Punkt, dem Symmetriezentrum M, gespiegelt. Ist das bei einer Figur, die man sieht, der Fall, so liegt augenscheinlich eine Punktspiegelung vor. „Mathematik-Nachhilfe: Aufgaben zur Punktspiegelung, Teil 1“ weiterlesen

Mathematik-Nachhilfe: Aufgaben zu Gleichungen, Teil 5

Bei Gleichungen in Mathe den algebraisch korrekten Weg einschlagen © M.E. PIXELIO www.pixelio.de

Bei Gleichungen ist es als Erstes zentral, dass man jegliche Produkte richtig ausklammert. Hier ist ganz besonders Acht zu geben auf die geltende Vorzeigenregel. Wichtig ist hierbei aber auch, dass man alle Einzelterme miteinander ausmultipliziert – und keinen vergisst. Ein Vorzeichen nicht korrekt „umwandeln“ oder einen Einzelterm vergessen, passiert nämlich sehr oft. Das ist in Mathe dann immer ein Ausdruck von mangelnder Routine. Aber auch beim Zusammenfassen gleichartiger Einzelterme darf einem kein Fehler passieren. Einzelterme, die den gleichen Buchstaben und die gleiche Potenz vorweisen sowie Zahlen ohne Variable dürfen zusammengefasst werden – alles andere ist algebraisch inkorret und daher falsch. Entstehen hier bereits Fehler, so ärgert man sich selbst hierüber am meisten – da diese schlichtweg dumme Fehler sind. „Mathematik-Nachhilfe: Aufgaben zu Gleichungen, Teil 5“ weiterlesen

Logisches Denken in Mathe – wichtig fürs Leben

 

Der Zauberwürfel als Symbol für eine logische Ordnung der Welt © Harald Wanetschka PIXELIO www.pixelio.de

Immer und immer wieder fragen sich Schülerinnen und Schüler speziell bei Stoffgebieten im Fach Mathe: „Warum, warum, warum nur! muss ich das lernen?! Das brauche ich doch nie, nie, nie mehr in meinem späteren Leben!“ Auf eine gewisse Weise kann man die Zornesfalten und Verzweiflungsmienen der Mathematik-lernen-Müssenden in der Schule verstehen. Terme, Gleichungen, Ableitungen, Prismen, Strahlensätze und, und, und werden einem nämlich, wenn man nicht Mathe, eine Natur- oder Ingenieurwissenschaft studieren möchte, sicherlich ein Leben lang nicht mehr vors Antlitz treten und eine geistige Marter verursachen. „Also doch umsonst alles gelernt!“, werden die Mathe-Hasser sogleich von sich geben. „Geahnt habe ich das ja schon immer“, setzen sich die Wutgedanken der Mathematik-Sinn-infrage-Steller fort. „Halt, halt, halt!“, muss man diesen aber sofort entgegenhalten. „Logisches Denken in Mathe – wichtig fürs Leben“ weiterlesen

Die Notwendigkeit eines Wortupdates für „Nachhilfe“

Das Wort Nachhilfe ist untrennbar mit Nachhilfe-Instituten verbunden © Karl-Heinz Laube PIXELIO www.pixelio.de

Wir Deutschen lieben den Pessimismus. Der Schwermut liegt uns irgendwie im Blut. Nicht durch Zufall haben wir daher hochpessimistische Philosophen wie Schopenhauer und Nietzsche hervorgebracht, die das Dasein als eine Schwere und nicht als eine Leichtigkeit ansahen. Bei uns ist immer das Wasser „halb leer anstatt halb voll“. Die germanische Eigentümlichkeit scheint die des Schwermuts zu sein. Alles ist eher dunkel statt hell. In nuce, im Kern, spiegelt sich diese Eigentümlichkeit unserer Nation in einem einzigen Wort wider – in dem Wort Nachhilfe. Das Wort Nachhilfe ist ja gerade in aller Munde. Schließlich steigt die Zahl an Nachhilfe in Anspruch nehmenden Schülerinnen und Schüler stetig. Eigentlich müsste es aber schon längst als das Unwort der Unwörter auserkoren worden sein und aus der dem alphabetischen Wortverzeichnis des Dudens entfernt worden sein (ich übertreibe hier natürlich, das ist ja auch eine Eigentümlichkeit der Deutschen, die mit dem ausgeprägten Pessimismus notwendigerweise zusammenhängt ;-)). „Die Notwendigkeit eines Wortupdates für „Nachhilfe““ weiterlesen