Mathematik-Nachhilfe: Aufgaben zu Bruchgleichungen, Teil 2

 

Der Beste in Mathe © S. Hofschlaeger PIXELIO www.pixelio.de

Dass Gleichungen nicht immer so einfach zu lösen sind wie lineare Gleichungen, das kann man bereits bei Bruchgleichungen wahrnehmen. Bruchgleichungen richtig aufzulösen, erfordert nämlich schon eine „gute Portion“ an Algebra-Kenntnissen. Das fällt einem besonders dann auf, wenn man dieses Mathe-Können nicht ganz so gut verinnerlicht hat. Ist das bei einer Schülerin oder einem Schüler der Fall, so sollte einem das aber auch zu denken geben! Gleichungen werden schließlich in Mathe nicht leichter. Ganz im Gegenteil. Bis zur Oberstufe kommen nämlich noch viel, viel schwierigere Gleichungen dran – und müssen, wie das bei vorherigen Gleichungen auch der Fall war, je nach Aufgabenstellung korrekt gelöst werden. Daher darf man in Mathe bei Gleichungen (und Funktionen) nie den Anschluss verlieren! Am besten ist es daher in Mathe immer der Primus (der Beste) oder die Prima (die Beste) zu sein! „Mathematik-Nachhilfe: Aufgaben zu Bruchgleichungen, Teil 2“ weiterlesen

Mathematik-Nachhilfe: Aufgaben zu Bruchtermen, Teil 7

 

Mathe-Klausur in der Schule© Klaus-Uwe Gerhardt PIXELIO www.pixelio.de

Es gibt für Schülerinnen und Schüler in Mathematik nichts Schlimmeres, als während einer Unterrichtsstunde in Anführungszeichen nur Bahnhof zu verstehen. Ist das bei den anderen Anwesenden in der Klasse gar nicht der Fall, so ist das für einen selbst supersuperunangenehm. Man erachtet sich nämlich sogleich als zu blöd. Für eine sensible Kinderpsyche ist das alles andere als gut. Daher sollte man unbedingt in Mathe aufpassen, dass dieses absolute Negativ-Phänomen möglichst eine Ausnahme bleibt. Ansonsten kann es wirklich schnell der Fall sein, dass man dauerhaft den Anschluss verliert – und im Mathematik-Unterricht nur noch Bahnhof versteht. Bruchterme stellen hierbei häufig ein Stoffgebiet dar, das einem oftmals anfangs Schwierigkeiten bereitet, besonders wenn man in der Grundschule sich beim Bruchrechnen schon schwer getan hat. Aber keine Panik! Der „Bahnhof“ verflüchtet sich auch hier, je mehr Aufgaben man zu diesem Stoffgebiet gelöst hat! „Mathematik-Nachhilfe: Aufgaben zu Bruchtermen, Teil 7“ weiterlesen

Mathematik-Nachhilfe: Aufgaben zum Flächeninhalt von Vielecken, Teil 4

 

Ein Baum-Trapez © poldy PIXELIO www.pixelio.de

Eine Flächenberechnung muss man in Mathematik stets an besonderen Vielecken durchführen. Die Fläche von besonderen Vielecken, wie beispielsweise von einem Rechteck, einem Parallelogramm, einem Trapez oder einem Drachenviereck, kann man in Mathe ja mittels einer Formel haargenau berechnen. Das Gleiche gilt übrigens für jedes Dreieck. Vor einer Berechnung ist es immer wichtig, dass alle Größenangaben dieselbe Einheit vorweisen. Auch muss man die Formel zur Berechnung der gesuchten Größe gegebenenfalls umformen. Jede Formel zur Lösung von besonderen Vielecken sowie von jedem Dreieck stellt ja nichts anderes als eine Gleichung dar. Mittels Äquivalenzumformungen kann man diese dann jeweils zu der gesuchten Größe hin umformen. „Mathematik-Nachhilfe: Aufgaben zum Flächeninhalt von Vielecken, Teil 4“ weiterlesen

Mathematik-Nachhilfe: Aufgaben zu Bruchgleichungen, Teil 1

Aufeinander aufbauende Mathematik-Stoffgegbiete vereinfacht dargestellt © Stephanie Hofschlaeger PIXELIO www.pixelio.de

Bruchterme hat man im Fach Mathe nicht umsonst sehr intensiv gepaukt. Schließlich bilden diese die Grundbausteine von Bruchgleichungen – und späteren gebrochenrationalen Funktionen. Wie man hier augenscheinlich sieht, ist die Mathematik stets aufeinander aufbauend bzw. verschiedene vorherige Stoffgebiete in einem neuen enthalten. Außer Bruchterme muss man nämlich auch bei Bruchgleichungen vor allem Gleichungen gut auflösen können. Beides ist hier bereits nicht mehr sooo leicht. Zum einen sind die Terme, die aufgrund der speziellen Form der Gleichungen auftreten können, teils schon sehr umfangreich, zum anderen muss man bei Bruchgleichungen auch immer den Definitionsbereich bestimmen und diesen mit der Lösung hin abgleichen – und stets aufpassen, dass hier eine Äquivalenzumformung vorliegt. „Mathematik-Nachhilfe: Aufgaben zu Bruchgleichungen, Teil 1“ weiterlesen

Mathematik-Nachhilfe: Aufgaben zur Punktspiegelung, Teil 2

 

Die Flagge von Costa Rica an einer Schule ©-Dieter Schütz PIXELIO www.pixelio.de

Im Alltag gibt es immer mal wieder vorkommende Phänomene aus dem Mathematik-Unterricht. Ein gutes Beispiel hierfür ist die Punktspiegelung. Viele Automarken, noch mehr Flaggen sowie einige Verkehrsschilder sind nämlich punktsymmetrisch. In der Sprache der Mathematik heißt das, dass bei diesen Zeichen oder Symbolen ein Symmetriezentrum M vorliegt, an dem jeder Symmetriepartner mit dem anderen zusammenfällt, und zwar bei einer 180º-Drehung bzw. einer Halbdrehung. Daher kann man bei solchen Zeichen oder Symbolen recht einfach feststellen, ob eine Punktsymmetrie vorliegt. Das Gleiche gilt für das Zeichnen von punktsymmetrischen Punkten oder Flächen in der Mittelstufe in Mathe. Punktsymmetrische Figuren zu zeichnen, ist nämlich kinderleicht. Auf eine andere Art muss man dies dann wiederum in der Oberstufe abrufen, und zwar bei der Analysis. Hier können nämlich punktsymmetrische Funktionen zum Ursprung auftreten. Die Punktspiegelung ist daher auch im Fach Mathe immer mal wieder vorkommend. „Mathematik-Nachhilfe: Aufgaben zur Punktspiegelung, Teil 2“ weiterlesen

Mathematik-Nachhilfe: Aufgaben zur Punktspiegelung, Teil 1

 

Das Brettspiel Halma © Karin Wuelfing PIXELIO www.pixelio.de

Ohne es oft zu wissen, sind wir um uns herum von Punktsymmetrien umgeben. Der Schilderwald im Straßenverkehr hat vielfach eine punktsymmetrische (und auch achsensymmetrische) Symbolik. Das Gleiche gilt für Spielkarten und Spielflächen sowie im Stile eines englischen Landschaftsgarten angelegte Parkflächen. Aber auch unser Alphabet besteht aus Buchstaben, die eine Punktsymmetrie vorweisen. Wie erkennt man aber diese bzw. wann genau ist etwas punktsymmetrisch? In der Mathematik ist eine Punktsymmetrie nichts anderes als eine Punktspiegelung. Jeder Punkt einer bestimmten Figur wird mittels Halbdrehung (180 º) an einem bestimmten Punkt, dem Symmetriezentrum M, gespiegelt. Ist das bei einer Figur, die man sieht, der Fall, so liegt augenscheinlich eine Punktspiegelung vor. „Mathematik-Nachhilfe: Aufgaben zur Punktspiegelung, Teil 1“ weiterlesen

Mathematik-Nachhilfe: Aufgaben zu Gleichungen, Teil 5

Bei Gleichungen in Mathe den algebraisch korrekten Weg einschlagen © M.E. PIXELIO www.pixelio.de

Bei Gleichungen ist es als Erstes zentral, dass man jegliche Produkte richtig ausklammert. Hier ist ganz besonders Acht zu geben auf die geltende Vorzeigenregel. Wichtig ist hierbei aber auch, dass man alle Einzelterme miteinander ausmultipliziert – und keinen vergisst. Ein Vorzeichen nicht korrekt „umwandeln“ oder einen Einzelterm vergessen, passiert nämlich sehr oft. Das ist in Mathe dann immer ein Ausdruck von mangelnder Routine. Aber auch beim Zusammenfassen gleichartiger Einzelterme darf einem kein Fehler passieren. Einzelterme, die den gleichen Buchstaben und die gleiche Potenz vorweisen sowie Zahlen ohne Variable dürfen zusammengefasst werden – alles andere ist algebraisch inkorret und daher falsch. Entstehen hier bereits Fehler, so ärgert man sich selbst hierüber am meisten – da diese schlichtweg dumme Fehler sind. „Mathematik-Nachhilfe: Aufgaben zu Gleichungen, Teil 5“ weiterlesen

Logisches Denken in Mathe – wichtig fürs Leben

 

Der Zauberwürfel als Symbol für eine logische Ordnung der Welt © Harald Wanetschka PIXELIO www.pixelio.de

Immer und immer wieder fragen sich Schülerinnen und Schüler speziell bei Stoffgebieten im Fach Mathe: „Warum, warum, warum nur! muss ich das lernen?! Das brauche ich doch nie, nie, nie mehr in meinem späteren Leben!“ Auf eine gewisse Weise kann man die Zornesfalten und Verzweiflungsmienen der Mathematik-lernen-Müssenden in der Schule verstehen. Terme, Gleichungen, Ableitungen, Prismen, Strahlensätze und, und, und werden einem nämlich, wenn man nicht Mathe, eine Natur- oder Ingenieurwissenschaft studieren möchte, sicherlich ein Leben lang nicht mehr vors Antlitz treten und eine geistige Marter verursachen. „Also doch umsonst alles gelernt!“, werden die Mathe-Hasser sogleich von sich geben. „Geahnt habe ich das ja schon immer“, setzen sich die Wutgedanken der Mathematik-Sinn-infrage-Steller fort. „Halt, halt, halt!“, muss man diesen aber sofort entgegenhalten. „Logisches Denken in Mathe – wichtig fürs Leben“ weiterlesen

Mathematik-Nachhilfe: Aufgaben zu binomischen Formeln, Teil 4

Warum, weshalb schon wieder in Mathe binomische Formeln © w.r.wagner PIXELIO www.pixelio.de

„Hört das denn in Mathe niemals auf mit den binomischen Formeln?“ fragt sich ein innerlich genervter Schüler, als just bei dem Stoffgebiet Quadratische Gleichungen binomischen Formeln wieder aus dem Nichts auftauchen. Unbeantwortete Fragen nerven ja bekanntlich ebenso sehr. Daher möchten wir hier auch keinen Schüler unnötigerweise länger als notwendig damit im Unklaren lassen. Die Antwort zu der an sich selbst gestellten Frage des Schülers ist folgende: bis zum Abitur in Mathematik – dann hat man aber endlich seine Ruhe vor den binomischen Formeln. Trotz jetziger Gewissheit macht das die ganze Sache für den Schüler natürlich nicht wesentlich besser. Korrekt lösen muss er ja in Mathe weiterhin die binomischen Formeln auflösen können. Und das kann man am besten, indem man das übt, übt und nochmals übt. „Mathematik-Nachhilfe: Aufgaben zu binomischen Formeln, Teil 4“ weiterlesen

Die Notwendigkeit eines Wortupdates für „Nachhilfe“

Das Wort Nachhilfe ist untrennbar mit Nachhilfe-Instituten verbunden © Karl-Heinz Laube PIXELIO www.pixelio.de

Wir Deutschen lieben den Pessimismus. Der Schwermut liegt uns irgendwie im Blut. Nicht durch Zufall haben wir daher hochpessimistische Philosophen wie Schopenhauer und Nietzsche hervorgebracht, die das Dasein als eine Schwere und nicht als eine Leichtigkeit ansahen. Bei uns ist immer das Wasser „halb leer anstatt halb voll“. Die germanische Eigentümlichkeit scheint die des Schwermuts zu sein. Alles ist eher dunkel statt hell. In nuce, im Kern, spiegelt sich diese Eigentümlichkeit unserer Nation in einem einzigen Wort wider – in dem Wort Nachhilfe. Das Wort Nachhilfe ist ja gerade in aller Munde. Schließlich steigt die Zahl an Nachhilfe in Anspruch nehmenden Schülerinnen und Schüler stetig. Eigentlich müsste es aber schon längst als das Unwort der Unwörter auserkoren worden sein und aus der dem alphabetischen Wortverzeichnis des Dudens entfernt worden sein (ich übertreibe hier natürlich, das ist ja auch eine Eigentümlichkeit der Deutschen, die mit dem ausgeprägten Pessimismus notwendigerweise zusammenhängt ;-)). „Die Notwendigkeit eines Wortupdates für „Nachhilfe““ weiterlesen