Mathematik-Nachhilfe: Aufgaben zu Logarithmen, Teil 2

Eine schwierige mit Rechenschieber zu lösende Aufgabe © Karl-Heinz Laube PIXELIO www.pixelio.de

Ein Logarithmus kann in Mathe ja stets mit folgender Gleichung wiedergegeben werden log_b y = x. Hierbei stellt b die Basis und y den Numerus des Logarithmus dar. Das x ist der Exponent, mit dem man die Basis b potenzieren muss, um den Numerus y bestimmen zu können. Aufgrund des Aufbaus einer Logarithmus-Gleichung ergeben sich drei verschiedene Aufgaben-Typen – je nach gesuchter Variable. Denn je nach Aufgabe kann bei der Gleichung das x gesucht sein, das b oder das y. Beim Lösen der gesuchten Variable muss man sich hierbei stets die Wechselbeziehung des Logarithmus zu folgender Potenzschreibweise vor Augen führen: log_b y = x entspricht: b^x = y. Dann kann man auch in Mathe ohne allzu große Schwierigkeiten diese höhere Rechenoperation meistern.

Weiterlesen

Please follow and like us:

Mathematik-Nachhilfe: Aufgaben zu Logarithmen, Teil 1

Ein Rechenschieber zur Bestimmung von Logarithmen © Klicker PIXELIO www.pixelio.de

Zu jeder Rechenoperation gibt es in der Mathematik eine Gegenrechenoperation: Zum Addieren das Subtrahieren, zum Multiplizieren das Dividieren und zum Potenzieren – das Logarithmieren. In Mathe Logarithmen verstehen, geht demzufolge über das Verstandenhaben von Potenzen. Das sollte doch machbar sein! Entscheidend beim Logarithmus ist, dass man sich dieses Wechselverhältnis zu der Potenz immer vor Augen führt: log_b y = x entspricht: b^x = y. Dadurch kann man jeden Logarithmus zu einer Potenz hin umwandeln – und das Ergebnis ermitteln. Ganz am Anfang „fühlen“ sich Logarithmen irgendwie „fremd“ an. Das liegt einfach an der ungewohnten Schreibweise. Je häufiger man diese aber in Potenzen umwandelt, desto „normaler“ fühlen diese sich aber an. Weiterlesen

Please follow and like us:

Logarithmen

1. Bestandteile und Besonderheiten eines Logarithmus

Es sind folgende Gleichungen gegeben: 2^x = 16

2^x = {\frac{1}{8}

2^x = \sqrt{2}

Der Exponent der Gleichungen ist hierbei jeweils gesucht, da dieser die Variable beinhaltet. Um die Lösung der Gleichung zu ermitteln, muss man einen Exponenten finden, durch den die jeweilige Gleichung wahr wird.

Bei der Gleichung 2^x = 16 ist x = 4 die Lösung der Gleichung. Denn: 2^4 = 16.

Bei der Gleichung 2^x = {\frac{1}{8} ist x = –3 die Lösung der Gleichung. Denn: 2^-^3 = {\frac{1}{8}.

Bei der Gleichung 2^x = \sqrt{2} ist x = {\frac{1}{2} die Lösung der Gleichung. Denn: 2^{\frac{1}{2} = \sqrt{2}.

Durch das Anwenden der Potenzgesetze kann man den Exponenten einer derartigen Gleichung ermitteln. Über den Logarithmus geht das ebenso – und auch bei Exponenten, die nicht ganz so einfach zu ermitteln sind.

 

Definition

Es sind zwei positive Zahlen y und b (b ≠ 1) gegeben.

1. Unter dem Logarithmus von y zu Basis b bezeichnet man diejenige Zahl x, mit dem man b potenzieren muss, um y zu erhalten. Es gilt daher für die Zahl x Folgendes: b^x = y.

Die Schreibweise hierfür ist: log_b y.

Die Zahl y vor dem log_b-Symbol nennt man Numerus.

Als Logarithmieren wird das Ermitteln des Logarithmus von y zur Basis b bezeichnet.

2. Liegt ein Logarithmus zur Basis 10 vor, so ist anstatt log_1_0 die gängige Schreibweise lg (für den dekadischen Logarithmus).

 

Beispiele:

Ermittle log_2 16 heißt: Bestimme den Exponenten x, so dass 2^x = 16 ergibt.

Ermittle log_2 {\frac{1}{8} heißt: Bestimme den Exponenten x, so dass 2^x = {\frac{1}{8} ergibt.

Ermittle log_2 \sqrt{2} heißt: Bestimme den Exponenten x, so dass 2^x = \sqrt{2} ergibt.

 

Die Wechselbeziehung zwischen Logarithmus und Potenz gibt man in der Mathematik folgendermaßen wieder:

log_b y = x entspricht: b^x = y

Da ein Logarithmus sich immer auf eine Potenz zurückführen lässt, die die Basis b^x vorweist, sind alle Logarithmuswerte stets positiv (da immer gilt: b > 0).

Beispiele:

log_2 64 entspricht: 2^x = 64. Daher ist x = 6.

log_3 9 entspricht: 3^x = 9. Daher ist x = 2.

log_4 4 entspricht: 4^x = 4. Daher ist x = 1.

lg 100 entspricht: 10^x = 100. Daher ist x = 2.

Mathematik-Nachhilfe-Hinweis: Beachte: lg = log_1_0

 

2. Logarithmieren und Potenzieren als Gegenrechenoperationen

Das Logarithmieren stellt die Gegenrechenoperation des Potenzierens dar. Bereits vom Addieren und dessen Gegenrechenoperation dem Subtrahieren sowie vom Multiplizieren und dessen Gegenrechenoperation dem Dividieren weiß man: Gegenrechenoperationen heben sich gegenseitig auf. Das ist auch beim Logarithmieren und Potenzieren der Fall.

 

2.1 Das Logarithmieren und das Potenzieren

Das Logarithmieren und das Potenzieren heben sich als Gegenrechenoperationen auf.

Logarithmieren und Potenzieren als Gegenrechenoperationen

In Worten wiedergegeben: Der Logarithmus zur Basis 2 mit dem Numerus 16 ergibt 4 (Logarithmiere 16 von 4). Die Basis 2 mit dem Exponenten 4 ergibt 16 (Potenziere 2 hoch 4). Hieraus folgt: „log_2 und 2 hoch“ heben sich als Rechenoperationen gegenseitig auf.

 

Das Potenzieren zur Basis b ist die Gegenrechenoperation des Logarithmierens zu Basis b.

Es gilt daher: b^l^o^g^_b^x = x für alle x Є {\mathbb R^+}

 

Beispiele:

log_2 16 = 4 entspricht: 2^4 = 16

log_2 8 = 3 entspricht: 2^3 = 8

log_2 {\frac{1}{2} = –1 entspricht: 2^-^1 = {\frac{1}{2}

 

2.2 Das Potenzieren und das Logarithmieren

Das Potenzieren und das Logarithmieren heben sich als Gegenrechenoperation gegenseitig auf.

Potenzieren und Logarithmieren als Gegenrechenoperationen

In Worten wiedergegeben: Die Basis 2 mit dem Exponenten 3 ergibt 8 (Potenziere 2 hoch 3). Der Logarithmus zur Basis 2 ergibt den Numerus 3 (Logarithmiere 2 von 8).

 

Das Logarithmieren zu Basis b ist die Gegenrechenoperation des Potenzierens zur Basis b.

Es gilt deshalb: log_b b^x = x für alle x Є {\mathbb R}

 

Beispiele:

2^3 = 8 entspricht: log_2 8 = 3

2^4 = 16 entspricht: log_2 16 = 4

2^-^1 = {\frac{1}{2} entspricht: log_2 {\frac{1}{2} = –1

 

3. Die drei verschiedenen Aufgabenkonstellationen bei Logarithmen

Bei einem Logarithmus log_b y = x kann je nach Aufgabe die Basis b gesucht sein, der Numerus y oder das x, der Exponent zur Basis b in der Potenzschreibweise.

 

3.1 Logarithmus mit x als Variable

Es ist folgende Logarithmus-Gleichung gegeben: log_2 16 = x. Diese Gleichung löst man nun derart.

log_2 16 = x <=>

2^x = 16

2^x = 2^4

x = 4

Das x stellt in der Potenzschreibwese den Exponenten dar.

 

Beispiele:

log_5 {\frac{1}{25} = x <=>

5^x = {\frac{1}{25}

5^x = 5^-^2

x = –2

 

lg 0,001 = x <=>

log_1_0 0,001 = x

10^x = 0,001

10^x = {\frac{1}{1000}

10^x = 1^-^3

x = –3

 

3.2 Logarithmus mit Basis b als Variable

Es ist folgender Logarithmus gegeben: log_b 64 = 3. Auf diese Weise löst man nun die Gleichung auf.

log_b 64 = 3 <=>

b^3 = 64

b^3 = 4^3

b = 4

 

Beispiele:

log_b 4 = 1 <=>

b^1 = 4

b^1 = 4^1

b = 4

 

log_b 1024 = 5 <=>

b^5 = 1024

b^5 = 4^5

b = 4

 

3.3 Logarithmus mit Numerus y als Variable

Es ist dieser Logarithmus gegeben: log_2 y = 5. Den Numerus y ermittelt man nun derart.

log_2 y = 5 <=>

2^5 = y

y = 32

 

Beispiele:

log_2 y = 3 <=>

2^3 = y

y = 8

 

log_4 y = {\frac{1}{2} <=>

4^{\frac{1}{2} = y

y = 2

Please follow and like us:

Rechenoperationen

Die Grundrechenarten Addition, Subtraktion, Multiplikation und Division

1. Rechenoperationen und Rechenfähigkeiten

In Mathematik muss man bekanntlich rechnen, rechnen und nochmals rechnen. Je besser man demzufolge rechnen kann, desto weniger Fehler passieren einem beim rechnerischen Lösen von Aufgaben. Die rechnerischen Fähigkeiten eines jeden Schülers hängen hierbei maßgeblich davon ab, wie gut man das elementare Mathe-„Handwerkszeug“ beherrscht – die Rechenoperationen.

Unter Rechenoperationen zählt man bei den Grundrechenarten das Addieren, Subtrahieren, Multiplizieren und das Dividieren und alle darauf basierenden Rechenoperationen wie das Potenzieren, das Wurzelziehen sowie das Logarithmieren. Hierbei lernt man die Rechenoperationen zunächst einzeln, später treten die gelernten Rechenoperationen jeweils beispielsweise bei dem Bruch-, Dezimal- und Prozentrechnen in Kombination wieder auf und anderen komplizierteren zu tätigenden Rechnungen.

Jede dieser Rechenoperationen unterliegt nun bestimmten Rechengesetzen/Rechenregeln. Da die „höheren“ Rechenoperationen wie das Potenzieren, das Wurzelziehen und das Logarithmieren auf den Grundrechenarten aufbauen, kann man tendenziell besser, schneller und vor allem fehlerfreier rechnen, wenn man die Grundrechenarten so gut wie möglich kann. Aufgrund der Tatsache, dass man spätestens ab der 8. Klasse einen Taschenrechner benutzen darf, kann man jedoch bei einem gekonnten Umgang mit dem Taschenrechner wiederum vorher vorhandene und auch spätere Rechenschwächen „umschiffen“ beziehungsweise kaschieren. Das geht aber nur, solange bloß „nackte“ Zahlen vorkommen. Spätestens aber, wenn Terme mit Variablen auftreten, „flackert“ die alte Rechenschwäche aufs Neue auf. Denn auch „höhere“ Rechenoperationen wie das Wurzelziehen und das Logarithmieren kommen in Mathematik bei Termen, Gleichungen und Funktionen vor – und müssen dort vielfach korrekt angewandt werden. Zwar gibt es inzwischen auch Taschenrechner, die beliebig programmierbar sind und auch schwierigere Mathe-Ausdrücke wie Terme, Gleichungen und Funktionen mit unterschiedlichen Variablen und „höheren“ Rechenoperationen wie das Wurzelziehen und Logarithmieren berechnen können, jedoch im Mathe-Abitur sind diese nicht zugelassen. Daher geht kein Weg daran vorbei, im Fach Mathe sich alle Rechenoperationen so gut wie möglich anzueignen – ansonsten verliert man unter Garantie immer schon Punkte aufgrund eines fehlerhaften Rechenweges. Auch besteht die nicht zu unterschätzende Gefahr, dass man durch Rechenfehler den Lösungsweg verkompliziert.

Ebenso sollte man sich im Klaren sein: Je höher die Klassenstufe ist, desto häufiger wird im Fach Mathematik während der Klassenarbeiten die Uhr ticken. Umso mehr gilt das noch für das schriftliche Mathe-Abitur. Hat man daher gerade in der Oberstufe noch irgendwelche Rechenprobleme bei bestimmten Rechenoperationen, dann werden nicht nur die Klassenarbeiten in Mathematik von der Note her mit sehr hoher Wahrscheinlichkeit alles andere als gut ausfallen – sondern auch das zu absolvierende schriftliche Mathe-Abitur.

 

2. Die Rechenoperationen bei den Grundrechenarten

Die elementarsten Rechenoperationen treten bei den Grundrechenarten, der Addition, Subtraktion, Multiplikation und der Division, auf. Hierbei bezeichnet man die Rechenoperation bei der Addition als ein Addieren, bei der Subtraktion als ein Subtrahieren, bei der Multiplikation als ein Multiplizieren und die Rechenoperation bei der Division als ein Dividieren.

 

Das Addieren: Beim Addieren/einem Zusammenzählen werden mindestens zwei Zahlen zusammengezählt/addiert. Das hierbei verwendete Rechenzeichen/Operarator(zeichen) ist das Pluszeichen/„+“. Die einzelnen mathematischen Zahlen/Operanden werden beim Addieren jeweils als Summanden bezeichnet und das Ergebnis als Summe. Es gilt daher beim Addieren folgende allgemeine Mathematik-Rechenoperation.

Summand + Summand = Summe

Beispiele:

1. 3 + 7 = 10

2. 12 + 34 = 46

3. 400 + 2 = 402

4. 7040051 + 778 = 7040829

Um das Addieren als Rechenoperation bei der Addition korrekt rechnerisch durchzuführen, muss man natürlich noch die hierbei auftretenden Rechengesetze/Rechenregeln beherrschen.

 

Das Subtrahieren: Beim Subtrahieren/einem Abziehen wird mindestens eine Zahl von einer anderen abgezogen/subtrahiert. Das hierbei verwendete Rechenzeichen/Operator(zeichen) ist das Minuszeichen/„„. Die mathematischen Zahlen/Operanden werden bei beim Subtrahieren unterschieden, und zwar in Minuend und Subtrahend (der Minuend steht hierbei immer vor dem Subtahend), und das Ergebnis wird als Differenz bezeichnet. Es gilt daher beim Subtrahieren diese allgemeine Mathematik-Rechenoperation.

Minuend Subtrahend = Differenz

Beispiele:

1. 8 – 5 = 3

2. 25 – 14 = 11

3. 2025 – 493 = 1532

4. 5030678 – 9856 = 5020822

Damit man das Subtrahieren als Rechenoperation bei der Subtraktion auch korrekt rechnerisch umsetzten kann, muss man natürlich ebenso die hier geltenden Rechengesetze/Rechenregeln können.

Mathematik-Nachhilfe-Hinweis: Die umgekehrte Rechenoperation zum Addieren/zum Zusammenzählen stellt das Subtrahieren/das Abziehen dar.

 

Das Multiplizieren: Beim Multiplizieren/einem Malnehmen werden mindestens zwei Zahlen miteinander malgenommen/multipliziert. Das hierbei verwendete Rechenzeichen/Operator(zeichen) ist das Multiplikationszeichen/·„. Die mathematischen Zahlen/Operanden werden beim Multiplizieren jeweils als Faktor und das Ergebnis als Produkt bezeichnet. Es gilt daher beim Multiplizieren folgende allgemeine Rechenoperation.

Faktor · Faktor = Produkt

Beispiele:

1. 3 · 4 = 12

2. 18 · 12 = 216

3. 3511 · 432 = 1516752

4. 6693467 · 3406 = 22797948602

Zum korrekten rechnerischen Umsetzen des Multiplizierens als Rechenoperation bei der Multiplikation ist natürlich ebenfalls ein Beherrschen der Rechengesetze/Rechenregeln dieser Grundrechenart vonnöten.

 

Das Dividieren: Beim Dividieren/einem Teilen wird mindestens eine Zahl durch eine andere geteilt/dividiert. Das hierbei verwendete Rechenzeichen/Operator(zeichen) ist das Divisionszeichen/:„. Die mathematischen Zahlen/Operanden werden beim Dividieren unterschieden, und zwar in Dividend und Divisor (der Dividend steht hierbei immer vor dem Divisor) , und das Ergebnis wird als Quotient bezeichnet. Es gilt daher beim Dividieren diese allgemeine Rechenoperation.

Dividend : Divisor = Quotient

Beispiele:

1. 9 : 3 = 3

2. 75 : 15 = 5

3. 978 : 2 = 489

4. 5978808 : 36 = 166078

Damit das Dividieren als Rechenoperation bei der Division fehlerfrei angewandt werden kann, muss man hier ebenfalls natürlich die Rechengesetze/Rechenregeln dieser Grundrechenart können.

Mathe-Nachhilfe-Hinweis: Die umgekehrte Rechenoperation zum Multiplizieren/zum Malnehmen ist das Dividieren/das Teilen

 

2.1 Die Rechenoperationen beim Bruchrechnen

Jeder Bruch kann auf eine Division zurückgeführt werden, da jeder Bruch nichts anderes als eine Division darstellt.

Beispiele Zurückführen von Brüchen auf die Division:

1. {\frac{1}{4} = 1 : 4

2. {\frac{9}{13} = 9 : 13

3. {\frac{5}{907} = 5 : 907

4. {\frac{30010}{667859} = 30010 : 667859

Das Bruchrechnen basiert auf den Grundrechenarten. Daher treten die Addition, die Subtraktion, die Multiplikation und die Division bei Brüchen wieder auf und deren Rechenoperationen. Demzufolge gibt es Brüche, deren Summe man berechnen muss, deren Differenz, deren Produkt und deren Quotient. Deshalb gilt für das Bruchrechnen, dass die Rechengesetze/Rechenregeln der Grundrechenarten beherrscht werden müssen und zudem, dass natürlich die dieser Rechenart zugrunde liegenden Rechengesetze/Rechenregeln korrekt angewandt werden müssen.

Beispiele Addieren bei Brüchen:

1. {\frac{1}{5} + {\frac{2}{5} = {\frac{3}{5}

2. {\frac{5}{12} + {\frac{3}{7} = {\frac{71}{84}

3. {\frac{3}{205} + {\frac{12}{19} = {\frac{2517}{3895}

4. {\frac{141}{5075} + {\frac{507}{4960} = {\frac{654477}{5034400}

 

Beispiele Subtrahieren bei Brüchen:

1. {\frac{3}{7} {\frac{2}{7} = {\frac{1}{7}

2. {\frac{22}{23} {\frac{8}{9} = {\frac{14}{207}

3. {\frac{7}{402} {\frac{3}{1115} = {\frac{6599}{448230}

4. {\frac{151}{4738} {\frac{121}{68905} = {\frac{9831357}{326471890}

 

Beispiele Multiplizieren von Brüchen:

1. {\frac{2}{5} · {\frac{3}{7} = {\frac{6}{35}

2. {\frac{7}{12} · {\frac{19}{25} = {\frac{133}{300}

3. {\frac{305}{2007} · {\frac{33}{35} = {\frac{671}{4683}

4. {\frac{907}{3008} · {\frac{5534}{12877} = {\frac{2509669}{19367008}

 

Beispiele Dividieren von Brüchen:

1. {\frac{3}{7} : {\frac{3}{5} = {\frac{5}{7}

2. {\frac{11}{29} : {\frac{5}{12} = {\frac{132}{145}

3. {\frac{10}{411} : {\frac{554}{679} = {\frac{3395}{113847}

4. {\frac{123}{3217} : {\frac{7004}{9001} = {\frac{1107123}{22531868}

 

2.2 Die Rechenoperationen beim Dezimalrechnen

Nahezu jede Dezimalzahl (bis auf nicht-abbrechende Dezimalzahlen, die nicht periodisch sind). können ohne Weiteres als Bruch dargestellt werden und somit wieder auf die Division zurückgeführt werden.

 

Beispiele Zurückführen von Dezimalzahlen auf Brüche und die Division:

1. 0,2 = {\frac{2}{10} = 2 : 10

2. 0,347 = {\frac{347}{1000} = 347 : 1000

3. 45,87539 = {\frac{4587539}{100000} = 458753 : 100000

4. 876,9659007 = {\frac{8769659007}{10000000} = 8769659007 : 10000000

Das Gleiche, was für das Bruchrechnen gilt, gilt ebenso für das Dezimalrechnen. Auch das Dezimalrechnen basiert auf den Grundrechenarten. Daher kommen auch hier die Addition, die Subtraktion, die Multiplikation und die Division wieder vor sowie deren Rechenoperationen. Folglich treten Dezimalzahlen auf, deren Summe man bilden muss, deren Differenz, deren Produkt und deren Quotient. Deshalb gilt auch beim Dezimalrechnen, dass wiederum die Rechengesetze/Rechenregeln der Grundrechenarten abgerufen werden können müssen und natürlich außerdem die dieser Rechenart zugrunde liegenden Rechenregeln beachtet werden müssen.

 

Beispiele Addieren bei Dezimalzahlen:

1. 3,4 + 5,3 = 8,7

2. 12,9 + 53,8 = 66,7

3. 443,72 + 867,88 = 1311,6

4. 956,75 + 84555,845 = 85512,595

 

Beispiele Subtrahieren bei Dezimalzahlen:

1. 7,9 – 4,5 = 3,4

2. 15,81 – 2,2 = 13,61

3. 4078,74 – 975,65 = 3103,09

4. 685942,5 – 65,5647 = 685876,9353

 

Beispiele Multiplizieren bei Dezimalzahlen:

1. 8,5 · 7,3 = 62,05

2. 12,61 · 4,1 = 51,701

3. 657,43 · 73,82 = 48531,4826

4. 17945,21 · 74562,645 = 1338042322,68045


Beispiele Dividieren bei Dezimalzahlen:

1. 4,6 : 2,5 = 1,84

2. 78,65 : 1,25 = 62,92

3. 876,06 : 12,5 = 70,0848

4. 1456,44 : 10,6 = 137,4

 

2.3 Die Rechenoperationen beim Prozentrechnen

Jede Prozentangabe lässt sich als Bruch darstellen und kann somit auf die Division zurückgeführt werden.

 

Beispiele Zurückführen von Prozentangaben auf Brüche und die Division

1. 5 % = {\frac{5}{100} = 5 : 100

2. 12,76 % = {\frac{1276}{10000} = 1276 : 10000

3. 67,987 % = {\frac{67987}{100000} = 67987 : 100000

4. 8765,87 % = {\frac{876587}{10000} = 876587 : 10000

Da bei der Prozentrechnung immer Proportionalitätsverhältnisse vorliegen, bei der der gesuchte Wert jeweils mittels eines Dreisatzes bestimmt werden kann, lässt sich die Prozentrechnung auf die Multiplikation und Division zurückführen. Denn diese beiden Grundrechenarten müssen beim Dreisatz stets angewandt werden. Daher treten hier als Rechenoperationen das Multiplizieren und das Dividieren auf.

 

2.4 Die Rechenoperationen beim Zinsrechnen

Die Zinsrechnung ist ein Teilgebiet der Prozentrechnung. Daher kommen auch hier stets Proportionalitätsverhältnisse vor, bei denen jeweils der gesuchte Wert mit dem Dreisatz bestimmt werden kann. Da der Dreisatz auf die Multiplikation und die Division zurückgeführt werden kann, basiert die Zinsrechnung ebenso auf diesen beiden Grundrechenarten. Deshalb treten auch hier wiederum als Rechenoperationen das Multiplizieren und das Dividieren auf.

 

3. Die Rechenoperationen beim Potenzieren

Die nächst höhere Rechenoperation, die nach den Grundrechenarten folgt, ist das Potenzieren. Eine Potenz kann hierbei auf eine spezielle Multiplikation zurückgeführt werden, und zwar auf diejenige, bei der die Faktoren jeweils gleich sind. Daher stellt eine Potenz nur eine verkürzte Schreibweise/Darstellung dieser besonderen Multiplikation dar. Eine Potenz selbst besteht hierbei aus einer Basis/„a“und einem Exponenten/„n„. Folgende allgemeine Mathematik-Rechenoperation liegt deshalb dem Potenzieren zugrunde.

a · a · a · a · a · a · ……… · a = an

n-Faktoren von a ergeben an

 

Beispiele:

1. 5 · 5 · 5 · 5 · 5 · 5 · 5 · 5 · 5 = 5{^{9}}

2. 27 · 27 · 27 · 27 · 27 · 27 · 27 = 27{^{7}}

3. 8003 · 8003 · 8003 · 8003 · 8003 = 8003{^{5}}

4 {\frac{3}{7} · {\frac{3}{7} · {\frac{3}{7} · {\frac{3}{7} = ({\frac{3}{7}){^{4}}

5 7,32 · 7,32 · 7,32 · 7,32 · 7,32 · 7,32 · 7,32 · 7,32 = 7,32{^{8}}

Liegt eine Potenz vor, so gibt man in der Sprache der Mathematik die Potenz mit „a“ hoch „n“ wieder.

Das Hohelied auf das zweithöchste Gut des Menschen: der Freiheit! Einfach nur wunderschön!!!

 

Beispiele:

1. 34 heißt in Mathe richtig wiedergegeben 3 hoch 4.

2. 125 heißt in der Mathematik korrekt 12 hoch 5.

 

4. Die Rechenoperationen beim Wurzelziehen/Radizieren

Auf gleicher Ebene zum Potenzieren steht das Wurzelziehen/Radizieren. Denn eine Wurzel kann nahezu immer auf eine Potenz zurückgeführt werden, da das Wurzelziehen/Radizieren die umgekehrte Rechenoperation zum Potenzieren ist. Die Wurzel selbst wird mit folgendem Rechenzeichen/Operatorzeichen wiedergegeben: \sqrt. Eine Wurzel besteht hierbei jeweils aus einem Radikanden/„a“und einem Wurzeleponenten/ „n„. Das Zurückführen einer Wurzel auf eine Potenz zeigt sich in deren Beziehungsverhältnis.

\sqrt[n]{a} = x denn: xn = a

die n-te-Wurzel aus a = x denn: x hoch n = a

 

Beispiele:

1. \sqrt{25} = 5 denn: 52 = 2

2. \sqrt[4]{4096} = 8 denn: 84 = 4096

3. \sqrt[15]{32768} = 2 denn: 215 = 32768

4. {\sqrt{\frac{49}{100} = {\frac{7}{10} denn: ({\frac{7}{10})2 = {\frac{49}{100}

5. \sqrt{6,25} = 2,5 denn: 2,52 = 6,25

 

5. Die Rechenoperationen beim Logarithmieren

Eine weitere in Mathe zu lernende Rechenoperation stellt das Logarithmieren dar. Hierbei wird das Logarithmieren immer angewandt, wenn bei einer Potenz die Variable im Exponenten ermittelt werden soll. Der Logarithmus selbst wird mit folgendem Rechenzeichen/Operatorzeichen wiedergegeben: log. Ein Logarithmus besteht hierbei aus einer Basis/„b“ und einem Numerus/„y“. Zwischen einem Logarithmus und einer Potenz besteht nun folgendes Beziehungsverhältnis:

logby = x denn: bx = y

 

Beispiele:

log3 81 = 4 denn 34 = 81

log8 64 = 2 denn 82 = 64

log3 2187 = 7 denn 37= 2187

log_{\frac{1}{4} 2 = –{\frac{1}{2} denn ({\frac{1}{4})^-^{\frac{1}{2}} = 2

log_0_,_4 2,5 = –1 denn 0,4^-^1 = 2,5

Please follow and like us: