Mathematik-Nachhilfe: Aufgaben zu Wurzeln, Teil 4

Ein ''schreckliches''' Tafelbild aus dem Mathematik-Unterricht © bernhard PIXELIO www.pixelio.de

Terme, die einem in Mathe Angst machen, sind ein Ausdruck von algebraischer Unsicherheit. Je schwieriger die Terme werden, desto stärker kann daher auch die Verunsicherung steigen – und somit auch der Frust. Das kann einem dann im Nu das ganze Fach Mathematik verleiden. So weit sollte es daher unter keinen Umständen kommen! Terme sollten für einen keine Term-Monster werden. Oft bekommen Schülerinnen und Schüler größere algebraische Schwierigkeiten bei ganz neu aussehenden Term-Gebilden, wie das bei Wurzeln der Fall ist. Das Wurzelzeichen stellt ja auch ein ganz neues und deshalb erst einmal ein gänzlich ungewohntes Zeichen dar. Bei Wurzeln gilt aber das Gleiche wie bei anderen Term-Ausdrücken: Sie verlieren ihren Schrecken – durch Üben, Üben, Üben anhand von Aufgaben. Weiterlesen

Please follow and like us:

Mathematik-Nachhilfe: Aufgaben zum Stoffgebiet Term, Teil 9

Umformung und Berechnung von Termen © Sven Dovermann PIXELIO www.pixelio.de

Mittels Termumformungen erhält man in der Regel eine Vereinfachung eines Terms. Das hat ja auch einen Sinn. Schließlich möchte man durch Termumformungen beispielsweise die Lösung einer Gleichung ermitteln oder eine binomische Formel von der unaufgelösten Form in die aufgelöste Form bringen. Termumformungen basieren hierbei auf algebraischen Grundregeln. Wendet man diese algebraischen Grundregeln bei Termen korrekt an, so verändert man den Wert des Terms nicht. In der Sprache der Mathematik nennt man das Wertgleichheit. Wertgleiche Terme bleiben mittels algebraischer Umformung weiterhin wertgleich. Wichtig ist es, alle Regeln zur Vereinfachung eines Terms sehr gut zu verinnerlichen. Umso mehr verliert Mathe dann auch seinen Schrecken. Schließlich geht es ja immer und immer wieder in diesem Fach um Umformungen von Termen! Weiterlesen

Please follow and like us:

Mathematik-Nachhilfe: Aufgaben zu Bruchgleichungen, Teil 1

Aufeinander aufbauende Mathematik-Stoffgegbiete vereinfacht dargestellt © Stephanie Hofschlaeger PIXELIO www.pixelio.de

Bruchterme hat man im Fach Mathe nicht umsonst sehr intensiv gepaukt. Schließlich bilden diese die Grundbausteine von Bruchgleichungen – und späteren gebrochenrationalen Funktionen. Wie man hier augenscheinlich sieht, ist die Mathematik stets aufeinander aufbauend bzw. verschiedene vorherige Stoffgebiete in einem neuen enthalten. Außer Bruchterme muss man nämlich auch bei Bruchgleichungen vor allem Gleichungen gut auflösen können. Beides ist hier bereits nicht mehr sooo leicht. Zum einen sind die Terme, die aufgrund der speziellen Form der Gleichungen auftreten können, teils schon sehr umfangreich, zum anderen muss man bei Bruchgleichungen auch immer den Definitionsbereich bestimmen und diesen mit der Lösung hin abgleichen – und stets aufpassen, dass hier eine Äquivalenzumformung vorliegt. Weiterlesen

Please follow and like us:

Mathematik-Nachhilfe: Aufgaben zu Logarithmen, Teil 2

Eine schwierige mit Rechenschieber zu lösende Aufgabe © Karl-Heinz Laube PIXELIO www.pixelio.de

Ein Logarithmus kann in Mathe ja stets mit folgender Gleichung wiedergegeben werden log_b y = x. Hierbei stellt b die Basis und y den Numerus des Logarithmus dar. Das x ist der Exponent, mit dem man die Basis b potenzieren muss, um den Numerus y bestimmen zu können. Aufgrund des Aufbaus einer Logarithmus-Gleichung ergeben sich drei verschiedene Aufgaben-Typen – je nach gesuchter Variable. Denn je nach Aufgabe kann bei der Gleichung das x gesucht sein, das b oder das y. Beim Lösen der gesuchten Variable muss man sich hierbei stets die Wechselbeziehung des Logarithmus zu folgender Potenzschreibweise vor Augen führen: log_b y = x entspricht: b^x = y. Dann kann man auch in Mathe ohne allzu große Schwierigkeiten diese höhere Rechenoperation meistern.

Weiterlesen

Please follow and like us:

Mathematik-Nachhilfe: Aufgaben zu quadratischen Gleichungen, Teil 6

Ein Beispiel für zwei Lösungen einer quadratischen Gleichung

Eine quadratische Gleichung hat ja als Lösungen entweder zwei Lösungen, eine Lösung oder keine Lösung. Fast bis zum Erbrechen überprüft man dies rechnerisch bei unzähligen quadratischen Gleichungen. Das hat auch mit den verschiedenen rechnerischen Lösungsverfahren zu tun, die man hier immer auch anwenden muss – und beim Lösen der quadratischen Gleichungen mitlernt. So weiß man, dass man die p-q-Formel und das quadratische Ergänzen jeweils zum rechnerischen Lösen einer quadratischen Gleichung heranziehen kann. Ebenso wissen ältere Semester, dass das auch über die sogenannte Mitternachtsformel funktioniert. Aufgrund des vielen Rechnens vergisst man hierbei aber, dass man jede quadratische Gleichung auch zeichnerisch lösen kann. Zugegebenermaßen ist das zwar mühsamer und ungenauer als die rechnerischen Lösungsverfahren – aber es bringt einem noch einmal entschieden den Aufbau quadratischer Gleichungen näher. Weiterlesen

Please follow and like us:

Mathematik-Nachhilfe: Aufgaben zu Bruchtermen, Teil 6

Ein Rucksack mit Mathebuch und anderem Wichtigen für die Grundschule © birgitta hohenester PIXELIO www.pixelio.de

Das Kann-ich-doch-bereits-Phänomen gilt bei dem Stoffgebiet Bruchterme nicht nur für die Multiplikation von Bruchtermen, sondern auch für die Division. Aus der Grundschule wissen gelehrige Schülerinnen und Schüler noch, dass bei Brüchen die Division ähnlich funktioniert wie bei der Multiplikation von Brüchen. Es gibt nur einen klitzekleinen Unterschied. Ein Bruch wird mit einem anderen Bruch dividiert, in dem man beim zweiten Bruch den Kehrwert bildet und dann mit dem ersten malnimmt. Das, was für das Bruchrechnen gilt, das gilt nun wiederum auch für Bruchterme. Daher ist das Kann-ich-doch-bereits-Phänomen alles andere als ein Zufall, sondern es liegt einfach an der gleichen Berechnungsweise – und an dem Gutgelernthaben der Multiplikation und Division von Brüchen aus der eigenen Grundschulzeit. Weiterlesen

Please follow and like us:

Mathematik-Nachhilfe: Aufgaben zu Potenzen, Teil 6

Potenzen sind in Mathe allgegenwärtig

Potenzen begegnen einem in Mathe als Schülerin und Schüler von der Grundschule an bis zum Abitur. Das zeigt deren große Bedeutsamkeit. In der Grundschule wird hierbei die Beziehung einer Potenz zur Multiplikation aufgezeigt. In der Mittelstufe erweitert sich das Anwendungsspektrum von Potenzen. Es kommen Variablen hinzu, die Potenzen vorweisen. Das Zusammenfassen, Ausklammern/Faktorisieren und das Klammernauflösen wird dann hierbei geübt. Hierauf schließen sich die sehr wichtigen binomischen Formeln an und darauf vor Abschluss der Mittelstufe die verschiedenen Potenzgesetze. In der Oberstufe muss man schließlich von unterschiedlichsten Termen Ableitungen machen und daraufhin auch noch Integrale von Termen bilden, auch hier sind Potenzen allgegenwärtig. Wie man sieht – sind im Fach Mathematik Potenzen fundamental wichtig. Weiterlesen

Please follow and like us:

Mathematik-Nachhilfe: Aufgaben zu Wurzeln, Teil 3

Wurzeln in Mathe sind nicht komisch © gänseblümchen PIXELIO www.pixelio.de

Ja, das stimmt! Das ist eher ein lahmer Kalauer! Mit Zähnen und Bäumen in Mathematik „wurzeln“ – hahaha. Leider ist Mathe nicht wie Karneval, wo nahezu alles erlaubt ist! Die Wurzel von Zähnen und die Baumwurzel sind als Karnevalskostüm sicherlich lustig. Die Wurzel in Mathe hat damit aber jedoch rein gar nichts mit zu tun – zumindest was die reale Umsetzung angeht. Kalauern ist hier demzufolge auch sehr fehl am Platze. „Wurzeln“ in Mathematik kann man nämlich nur, wenn man die hierfür bestehenden Wurzelgesetze gut gelernt hat. Das ist auch der Grund, warum bei Klassenarbeiten zu diesem Stoffgebiet der Notendurchschnitt eher im Keller liegt… Und das empfindet dann spätestens eine Schülerin oder ein Schüler bei einer schlechten Mathe-Note – nicht mehr witzig. Weiterlesen

Please follow and like us:

Mathematik-Nachhilfe: Aufgaben zu Bruchtermen, Teil 5

Die Grundlage der Fortentwicklung (in der Schule und im Leben) - das Lernen © www.einstellungstest-polizei-zoll.de PIXELIO www.pixelio.de

„Zähler mal Zähler und Nenner mal Nenner“ – das hat man in Mathe beim Bruchrechnen bei der Multiplikation von Brüchen gelernt. Das ist normalerweise in der Grundschule in der 4. und 5. Klasse der Fall. Hier wird ja das Bruchrechnen von A bis Z durchgenommen. In der 8. Klasse bei speziellen Termen, den Bruchtermen, muss man in Anführungszeichen die Gedächtnisprobe aufs Exempel machen. Denn auch hier gilt wieder bei der Multiplikation von Bruchtermen „Zähler mal Zähler und Nenner mal Nenner“. Hat man die einfache Regel sofort wieder parat, so kann man mit ganz großer Wahrscheinlichkeit diese auch gleich wiederum anwenden. Gelernt ist halt gelernt – daher ist hier die Mathematik im Prinzip wie Fahrradfahren. Weiterlesen

Please follow and like us:

Mathematik-Nachhilfe: Aufgaben zu linearen Gleichungen, Teil 2

Eine “zuckersüße“ Gleichung © S. Hofschlaeger PIXELIO www.pixelio.de

Es gibt in Mathe eine Unzahl verschiedener Arten von Gleichungen. Das liegt an den großen Variationsmöglichkeiten von Termen. Eine Gleichung besteht ja aus Termen. Da ein einziger Term selbst wiederum sehr unterschiedliche Mathematik-Zeichen vorweisen kann, entstehen hierdurch jede Menge verschiedenartiger Gleichungen. Neben den Grundrechenarten, der Addition, der Subtraktion, der Multiplikation und der Division, kann ein Term auch Potenzen und Wurzeln vorweisen – und noch einiges mehr an Mathe-Verknüpfungen. Verschiedenartige Gleichungen kann man aber auch sehr gut veranschaulichen, wenn man eine Gleichung zur Funktion macht und sich den Graphen der Funktion anschaut. Dann sieht man nämlich große Unterschiede in dem Verlauf einer Funktion. Eine lineare Funktion, die auf einer linearen Gleichung basiert, ist z. B. eine Gerade, eine quadratische Funktion, die auf einer quadratischen Funktion basiert, ist hingegen eine Parabel. Weiterlesen

Please follow and like us: