Es gibt bei einer quadratischen Gleichung verschiedene rechnerische Lösungsverfahren. Wendet man diese korrekt an, ergeben jene allesamt das richtige Ergebnis. So funktioniert ja Mathe! Wie gelingt das einem aber? Das Stichwort ist hier: Fleiß! Auch wenn man am Anfang vielleicht nicht zur Gänze verstanden hat, wie die p-q-Formel oder das quadratische Ergänzen funktioniert, dann sollte man auf keinen Fall „den Kopf in den Sand stecken“. Vielmehr sollte man eigenständig versuchen Aufgaben zu lösen. Die Aufgaben überprüft man dann im Unterricht oder mit den gemachten Aufgaben von KlassenkameradInnen. Irgendwann macht es dann nämlich „klick“. Das passiert aber nur, wenn man weiter intensiv die Aufgaben macht – und genau guckt, wie man mittels eines Lösungsverfahren zur Lösung einer quadratischen Gleichung kommt und was man für Fehler hierbei evtl. gemacht hat.
Kategorie: Quadratische Gleichungen
Bei quadratischen Gleichungen kann man mittels der p-q-Formel, der Mitternachtsformel oder eines quadratischen Ergänzens deren Lösungen ermitteln. Das sind ja alles bekanntermaßen Lösungsverfahren für quadratische Gleichungen. „Was aber, wenn die Lösung bereits vorliegt?“, sagt der Mathematik-Lehrer. „Schön“, sagt hier ein nicht so interessierter Mathe-Schüler. „Dann muss ich erst gar nicht rechnen.“ „Moment, das kann aber nicht sein,“ sagt hingegen eine an Mathematik eine Freude habende Schülerin. „Stimmt“, sagt schließlich der Lehrer. „Liegt eine Lösung einer quadratischen Gleichungen bereits vor, so soll man mittels eines Lösungsverfahren deren Normalform ermitteln!“, fährt dieser weiter. „Das macht man dann über den sogenannte Satz von Vieta, und zwar …“ „Mathe ist doch nie schön“, denkt sich schlussendlich der an dem Fach nicht interessierte Schüler.
Wenn ehemalige Schülerinnen und Schüler zu einer ganz bestimmten späteren Uhrzeit an Mathematik denken müssen – dann hat dies meist einen bestimmten Grund: Sie erinnern sich der großen Wichtigkeit einer Formel aus ihrem damaligen Mathe-Unterreicht – und zwar an die sogenannte Mitternachtsformel. Jeder, der früher Abitur gemacht hat, musste sich nämlich von seinem Mathe-Lehrer immer wieder gebetsmühlenartig anhören: „Diese Formel ist so wichtig, dass ihr sie sogar zu Mitternacht (und natürlich auch noch zu späterer Stunde 😉 ) auswendig vorsagen können müsst (und das, egal, wie euer geistiges und körperliches Befinden zu dieser Uhrzeit gerade ist 😉 )!“ Die Ergänzungen in der Klammer sind natürlich von mir spaßeshalber hinzugefügt worden, die Aussage des Lehrers entspricht jedoch einer wortwörtlichen Wiedergabe aus dem Mathe-Unterricht der Jahrzehnte vor dem 21. Jahrhundert. Denn noch vor der Schulreform und der damit einhergehenden Reform des Mathematik-Unterrichts hatte die Mitternachtsformel, mit der man die Lösungsmenge jeder quadratischen Gleichung der Form ax² + bx + c = 0 (a, b, x ∈ von und a ≠ 0) bestimmen kann, einen extrem hohen Stellenwert. Inzwischen sieht das jedoch fundamental anders aus!
Hat man gedacht: „Zum Glück habe ich das Mathe-Stoffgebiet lineare Gleichungen (und Funktionen) endlich hinter mir“, so muss man beim nächsten darauf aufbauenden sicherlich ordentlich Schlucken – quadratische Gleichungen (und Funktionen). Denn der Schwierigkeitsgrad bei diesem Stoffgebiet ist auch um einiges höher im Vergleich zu linearen Gleichungen und Funktionen. Das liegt an der höheren Potenz, dem „hoch 2″, das eine Variable bei einer quadratischen Gleichung (und Funktion) immer vorweist. Jetzt könnte aber ein mitdenkender Schüler entgegenhalten: „Da ja gegenüber linearen Gleichungen (und Funktionen) die Potenz nur um eins zunimmt, kann doch an sich der Schwierigkeitsgrad nicht enorm viel höher sein!“ Hier ist zu entgegnen: „Das stimmt auch an sich, dass diese Gleichungen (und Funktionen) für einen in Mathe nicht auf den Kopf gefallenen Schüler kein allzu großes Problem darstellen, da die Verkomplizierung zu linearen Gleichungen (und Funktionen) sich auch in Grenzen hält.“