Mithilfe des Wachstumsfaktors kann man bei einem Anwachsen eines Grundwerts sofort dessen genaue Zunahme berechnen. Umgekehrt kann man mit Zuhilfenahme des Abnahmefaktors bei dem Geringerwerden eines Grundwerts sogleich dessen Abnahme ausrechnen. Das ist sehr praktisch. So kann man nämlich beispielsweise bei einer Verteuerung der neuen anfallenden Kosten gewahr werden, bei einem Rabatt hingegen den Preis nach der Verbilligung einer Ware. Und beides kommt ja im Alltag sehr häufig vor. Daher haben diese beiden Formeln einen großen Alltagsbezug:
Kategorie: Mathe
Die Kultband ABBA konnte bereits ein Lied davon singen. Denn in MONEY MONEY MONEY aus dem Jahre 1976 thematisiert ABBA auf sehr melodische Art und Weise die Sonnen- und Schattenseiten von Geld. Je nachdem, ob man Geld hat, so die Lyrics des Songs, „must money money money be funny in the rich man’s world“ oder „sad“, wenn man hierfür „work all night, all day to pay the bills“. Aus dem Song kann man daher unstrittig heraushören, dass Geld etwas Anziehendes und Abstoßendes zugleich ist. Je älter man wird, desto mehr wird man das noch feststellen, da man immer mehr sehen wird, dass es in der Welt viel an Ungerechtigkeit gibt. Und der Hauptgrund hierfür liegt in der ungerechten Verteilung von Geld. Aber nicht nur ABBA kann hiervon ein Lied singen, sondern Abermillionen andere Menschen weltweit!
Ein nicht allzu schweres Mathe-Stoffgebiet stellt das Prozentrechnen dar. Schließlich basiert es zum einen nur auf der Multiplikation und Division, zum anderen dreht es sich stets um drei Begriffe – wobei der gesuchte Begriff stets mittels einer Mathematik-Formel berechnet werden kann. Daher ist das Prozentrechnen auch für Nicht-Mathe-Fans eine jederzeit zu bewältigende Hürde.
Die drei Begriffe, um die das Prozentrechnen kreist, sind hierbei der Grundwert G, der Prozentwert W und der Prozentsatz p %. Die drei Formeln zur Berechnung des jeweils gesuchten Begriffs setzen sich wie folgt zusammen:
Das Shakehands/Anstoß-Problem
Jedes Jahr stehen Familienfeierlichkeiten an. Das ist zweifelsohne sehr schön. Im trauten Kreis der Familie verbringt man schließlich am liebsten seine Zeit, da es viel zu Plaudern und Essen gibt und jede Menge anderweitige Gemeinschaftsaktivitäten gemacht werden. Daher ist die Freude allseits groß, wenn ein Familientreffen im Gange ist. Doch gerade hierbei Anwesende Mathematik- und Rätsel-Begeisterte können oftmals noch nicht gleich die entspannte Familienrunde genießen, da ihnen das Händeschütteln aller Familienmitglieder wiederum Kopfzerbrechen bereitet. Wie bei jedem Familientreffen lässt es nämlich den hier dabei seienden Jung- und Alt-Mathematikern und Jung- und Alt-Rätselfreunden erneut keine Ruhe, nicht genau zu wissen, wie hoch die genaue Anzahl der Familien-Shakehands dieses Mal ist. Deshalb ist auch immer ein vielfaches Getuschel zu hören, da die Mathematik-Begeisterten die Meinung vertreten, dass es für die genaue Shakehands-Anzahl eine Mathe-Formel gäbe, die Rätsel-Freunde hingegen jedoch der Auffassung sind, dass das Handschüttel-Problem ein immerwährendes Rätsel sei, das deshalb stets nur über ein genaues Abzählverfahren gelöst werden könne.
Neben Gleichungen gibt es in Mathematik noch sogenannte Ungleichungen. Wie der Name es schon vermuten lässt, unterscheiden sich hierbei Ungleichungen offenbar fundamental von Gleichungen, da die Vorsilbe „un“ im Deutschen immer eine Negation ausdrückt – und das demzufolge hier auch der Fall ist. Daher sind Ungleichungen definitiv keine Gleichungen – aber auch nicht komplett das Gegenteil davon.
Der zentrale Unterschied ist im Prinzip das Zeichen, das bei Ungleichungen auftritt. Denn bei einer Ungleichung wird normalerweise entweder ein „>“/„größer als“ oder ein „<“/„kleiner als“ verwendet anstatt wie bei einer Gleichung ein „=“/„gleich“. Dadurch gibt es auch im Gegensatz zu einer Gleichung niemals als Lösungsmenge eine einzige Lösung.
Bei der Ermittlung der Lösungsmenge gibt es aber eine signifikante Übereinstimmung zu Gleichungen. Sowohl Gleichungen als auch Ungleichungen löst man nämlich primär über Äquivalenzumformungen. Weiß man daher wie Äquivalenzumformungen in Mathe richtig gemacht werden, so kann man im Prinzip auch schon Ungleichungen lösen. Das ist doch super, so ökonomisch für die grauen Zellen kann nämlich Mathe auch sein!