Ohne es oft zu wissen, sind wir um uns herum von Punktsymmetrien umgeben. Der Schilderwald im Straßenverkehr hat vielfach eine punktsymmetrische (und auch achsensymmetrische) Symbolik. Das Gleiche gilt für Spielkarten und Spielflächen sowie im Stile eines englischen Landschaftsgarten angelegte Parkflächen. Aber auch unser Alphabet besteht aus Buchstaben, die eine Punktsymmetrie vorweisen. Wie erkennt man aber diese bzw. wann genau ist etwas punktsymmetrisch? In der Mathematik ist eine Punktsymmetrie nichts anderes als eine Punktspiegelung. Jeder Punkt einer bestimmten Figur wird mittels Halbdrehung (180 º) an einem bestimmten Punkt, dem Symmetriezentrum M, gespiegelt. Ist das bei einer Figur, die man sieht, der Fall, so liegt augenscheinlich eine Punktspiegelung vor.
Kategorie: Mathematik
Die Mathematik ist etwas sehr altes. Bereits in der Antike beschäftigten sich Menschen damit. Als Schülerin und Schüler weiß man das natürlich oft nicht. Warum auch? Mathe-Gesetze „fühlen“ sich eh zeitlos an! Daher ist beispielsweise der Satz des Pythagoras auch noch in 500 Millionen Jahren gültig – und darüber hinaus. Dennoch müssen Menschen erst auf solch eine Mathe-Gesetzmäßigkeit stoßen, was bei dem Satz des Pythagoras schon superlange her ist. Denn bereits im 6. Jahrhundert vor Christus stieß angeblich Pythagoras auf die nach ihm benannte sehr berühmte Gesetzmäßigkeit. Heute weiß man aber, dass auch schon vor ihm Babylonier und Ägypter diese Gesetzmäßigkeit kannten. In der Schule beim Satz des Pythagoras bekommt man daher spätestens einen Begriff davon, wie alt die Mathematik doch ist…
Bei Ungleichungen in Mathe ist eine Rechenregel überaus entscheidend! Diese lautet: Immer wenn man bei einer Ungleichung eine Multiplikation oder Division mit einer negativen Zahl durchführt, dann dreht sich das Vorzeichen der Ungleichung um. Hierbei handelt sich um eine Äquivalenzumformung. Alle anderen Lösungsschritte, die zur Lösung der Ungleichung führen, macht man genauso wie man das beim Lösen von Gleichungen bereits gelernt hat. Das ist sicherlich auch der Grund, warum Ungleichungen im Fach Mathematik heutzutage nur noch ein Randthema sind. Kann man nämlich Gleichungen lösen, so kann man auch Ungleichungen lösen – vorausgesetzt man beherzigt die einzige Ausnahme mit dem „Vorzeichen-Wechsel“ bei der Multiplikation und Division von negativen Zahlen.
Wer in Mathematik gegenüber seinen Mitschülern beim Stoffgebiet Potenzen die Aufgaben am schnellsten löst, ist nicht automatisch am potentesten, sprich am stärksten (potens = das lateinische Adjektiv für stark). Der Knabe oder das junge Fräulein kann einfach gut rechnen – und hierbei Potenzgesetze richtig anwenden. Da Potenzen auf der Rechenoperation des Multiplizierens basieren, beherrschte der Knabe oder das junge Fräulein das Malnehmen unter Garantie auch schon sehr gut. Daher war der Switch hin zu Potenzen und deren Potenzgesetze für dieses Kind ein Leichtes. Gut aufpassen und gut mitmachen, zahlt sich schließlich vor allem im Fach Mathematik aus. Dadurch ist man aber auch alles andere als ein Streber oder eine Streberin. Man erfüllt einfach seinen Job, der zu diesem Zeitpunkt Schülerin oder Schüler heißt – und das kontinuierlich.
Aufgaben zu Termen kann man niemals genug in Mathe lösen. Hierauf basieren ja alle höheren Mathematik-Stoffgebiete, die noch in der Mittelstufe sowie in der Oberstufe in der Schule behandelt werden. Daher sollte man auch Terme „im Schlaf lösen können“. Das kann man auch ohne Weiteres, wenn man – wie das übrigens bei jedem Mathe-Stoffgebiet der Fall ist – ein paar fundamentale Regeln beherzigt. Die wichtigste bei Termen ist die Vorrangregel. Diese besteht aus drei Teilen:
- Ein Term rechnet man immer von links nach rechts, wenn keine andere Regel vorkommt.
- Bei einer Klammer wird immer das Innere der Klammer als Erstes berechnet.
- Gibt es bei einem Term keine Klammer, so gilt Punktrechnung vor Strichrechnung sowie Potenzrechnung vor Punktrechnung und vor Strichrechnung.