Kategorien
Mathematik

Mathematik-Nachhilfe: Oberfläche und Volumen von Pyramiden, Gastbeitrag

Oberfläche und Volumen von Pyramiden sind Teil der Raumgeometrie. Wie aber berechnet man das Volumen und die Oberfläche von Pyramiden am unkompliziertesten? Welche Formeln benötigt man dazu und an welcher Stelle muss man mit dem Satz des Pythagoras rechnen? Eine Reihe von Fragen also, die wir im Folgenden beantworten wollen. Ein spezielles Augenmerk dabei werden wir auf die häufigsten Fehler legen, die Schülern in Klassenarbeiten immer wieder unterlaufen und mit welchen Strategien man sie am besten verhindern kann. Sehen wir uns zunächst einmal zwei Pyramiden an:

Schrägbild einer Pyramide

Kategorien
Mathematik

Mathematik-Nachhilfe: Aufgaben zu linearen Gleichungssystemen, Teil 3

Das Passende in das Andere einsetzen © RainerSturm PIXELIO www.pixelio.de

Neben dem Gleichsetzungsverfahren lernt man in Mathe noch ein weiteres Lösungsverfahren für lineare Gleichungssysteme kennen: das Einsetzungsverfahren. Im Gegesatz zum Gleichsetzungsverfahren setzt man hier nicht beide Gleichungen gleich, sondern setzt eine Gleichung in die andere Gleichung ein – daher der Name Einsatzungsverfahren. Das geht natürlich nur, wenn man die einzusetzende Gleichung nach einer Variablen (x oder y) hin separiert hat. Ebenso kann man die einzusetzende Gleichung nach einem Vielfachen der Variablen (z. B. 2x, 3y usw.) hin umformen – vorausgesetzt natürlich, dass dieses Vielfache der Variable (z. B. 2x, 3y usw.) auch bei der Gleichung, in der man die dergestalt aufgelöste Gleichung einsetzt, dort auch haargenau so vorhanden ist. Den Rest kennt man dann bereits. Die daraufhin nur noch eine Variable vorweisende Gleichung löst man nach dieser Unbekannten hin auf. Das Ergebnis setzt man in eine der beiden Ursprungsgleichungen ein und ermittelt hierdurch das zweite Lösungspaar des linearen Gleichungssystems.

Kategorien
Mathematik

Mathematik-Nachhilfe: Aufgaben zum Dreisatz, Teil 1

Kapitalanlage Eigenheim © Michael Grabscheit PIXELIO www.pixelio.de

Häuslebauer, Kapitalanleger und Sparfüchse greifen für ihre geldlichen Angelegenheiten häufig auf eine Mathe-Gesetzmäßigkeit zurück: auf den Dreisatz. Das liegt nicht daran, dass diese Personengruppen ein besonderes Faible für Mathematik haben und insbesondere für den Dreisatz. Hierfür gibt es zweierlei andere – ganz simple – Gründe. Der Dreisatz ist alles andere als kompliziert und bei Geld-Dingen, denen oft proportionale Verhältnisse zugrunde liegen, jederzeit anwendbar. Daher ziehen ihn „Geldoptimierer“ gerne und oft heran, um einen genauen Überblick über ihre geldlichen Angelegenheiten zu bekommen. Ein proportionaler Zuwachs an Geld oder eine proportionale Abnahme bei einem Rabatt oder einer ähnlichen Verbillungsmaßnahme von Produkten/Waren kann mittels des Dreisatzes im Nu ermittelt werden – und Häuslebauer, Kapitalanleger und Sparfüchsen ein emotionales Tageshoch bescheren.

Kategorien
Mathematik

Mathematik-Nachhilfe: Aufgaben zum Stoffgebiet Term, Teil 10

Noten von Fächern eines Abschlusszeugnisses © Jürgen Bücker PIXELIO www.pixelio.de

Terme sind in Mathe Ausdrücke, die man auf bestimmte algebraische Weise verändern kann. Hierfür gibt es eine Vielzahl von Regeln. Je öfter man die Regeln bei verschiedenen Termen anwendet, desto mehr gehen diese „in Fleisch und Blut über“. Je nach Aufgabe muss man einen Term aber auch erst aufstellen. Liegt eine Textaufgabe vor, so muss man nämlich erst die dort dargelegten schriftsprachlichen Informationen in die Sprache der Mathematik übertragen. Der Schwierigkeitsgrad ist hier in der Regel etwas höher. Man muss ja den dargelegten Zusammenhang verstehen und auch wissen, wie man diesen in einem Term wiedergeben kann. Daher kommt es nicht von ungefähr, dass viele Schülerinnen und Schüler in Mathe Textaufgaben nicht sooo mögen.

Kategorien
Mathematik

Mathematik Nachhilfe: Aufgaben zu linearen Gleichungen, Teil 3

Die Zeit läuft jetzt – zum Lösen einer linearen Gleichung. © dr PIXELIO www.pixelio.de

Hat man in Mathe eine lineare Gleichung vor sich, so zeigt sich hier das spätere Algebra-Können – oder auch nicht. Je nach Aufgabenstellung sollte man nämlich als Schülerin oder als Schüler ganz fix die Gleichung so verändern, dass man im Nu zu der gewünschten Lösung gelangt. Lineare Gleichungen sind ja in der Mathematik die einfachsten Gleichungen und besitzen daher eine sehr überschaubare Komplexität. Deshalb kann man an diesen sich jegliche Problemstellung sehr gut verständlich vor Augen führen – was wiederum sehr hilfreich für komplexere Gleichungen ist. Wie intensiv man sich mit linearen Gleichungen beschäftigt hat und wie hoch der Verständnisgrad ist, zeigt sich dann immer schließlich in der Zeit, die man zum Lösen einer Aufgabe benötigt.