
„Die Probe aufs Exempel machen“, diese Redensart/dieses Sprichwort passt auch bestens zu Gleichungen. Bei jeder Gleichung kann man nämlich mittels des über Äquivalenzumformungen ausfindig gemachten Ergebnisses überprüfen – ob dieses auch wirklich das richtige ist! Hierzu muss man nur einfach stets „die Probe aufs Exempel machen“. Aber wie geht das nun genau bei jeder einzelnen Gleichung? Ganz einfach. Indem man jede ermittelte Lösung in die Ursprungsgleichung einsetzt. Die Ursprungsgleichung ist hierbei immer die Gleichung, an der noch keine Äquivalenzumformungen vorgenommen wurden. „Für mich ist das nicht ganz logisch, da doch eine Lösung eine Lösung ist – und deshalb eigentlich nicht falsch sein kann“, könnte hier jetzt ein „mitdenkender“ Schüler entgegenhalten. Der Mathematik-Lehrer kann zwar den Einwand seines Schülers nachvollziehen, aber trotzdem nichts gegen die Mathe-Tatsache machen, dass nicht jede ermittelte Lösung einer Gleichung auch eine wirkliche Lösung einer Gleichung ist – was demzufolge ebenso der Schüler „schlucken“ muss.