Im Alltag gibt es immer mal wieder vorkommende Phänomene aus dem Mathematik-Unterricht. Ein gutes Beispiel hierfür ist die Punktspiegelung. Viele Automarken, noch mehr Flaggen sowie einige Verkehrsschilder sind nämlich punktsymmetrisch. In der Sprache der Mathematik heißt das, dass bei diesen Zeichen oder Symbolen ein Symmetriezentrum M vorliegt, an dem jeder Symmetriepartner mit dem anderen zusammenfällt, und zwar bei einer 180º-Drehung bzw. einer Halbdrehung. Daher kann man bei solchen Zeichen oder Symbolen recht einfach feststellen, ob eine Punktsymmetrie vorliegt. Das Gleiche gilt für das Zeichnen von punktsymmetrischen Punkten oder Flächen in der Mittelstufe in Mathe. Punktsymmetrische Figuren zu zeichnen, ist nämlich kinderleicht. Auf eine andere Art muss man dies dann wiederum in der Oberstufe abrufen, und zwar bei der Analysis. Hier können nämlich punktsymmetrische Funktionen zum Ursprung auftreten. Die Punktspiegelung ist daher auch im Fach Mathe immer mal wieder vorkommend.
Schlagwort: Punktspiegelung
Ohne es oft zu wissen, sind wir um uns herum von Punktsymmetrien umgeben. Der Schilderwald im Straßenverkehr hat vielfach eine punktsymmetrische (und auch achsensymmetrische) Symbolik. Das Gleiche gilt für Spielkarten und Spielflächen sowie im Stile eines englischen Landschaftsgarten angelegte Parkflächen. Aber auch unser Alphabet besteht aus Buchstaben, die eine Punktsymmetrie vorweisen. Wie erkennt man aber diese bzw. wann genau ist etwas punktsymmetrisch? In der Mathematik ist eine Punktsymmetrie nichts anderes als eine Punktspiegelung. Jeder Punkt einer bestimmten Figur wird mittels Halbdrehung (180 º) an einem bestimmten Punkt, dem Symmetriezentrum M, gespiegelt. Ist das bei einer Figur, die man sieht, der Fall, so liegt augenscheinlich eine Punktspiegelung vor.