Mathematik-Nachhilfe: Aufgaben zu linearen Funktionen, Teil 3

Eine Funktion in Mathe © Samuel G. PIXELIO www.pixelio.de

Beim Stoffgebiet lineare Funktionen in Mathe lernt man bereits, dass bei Funktionen sowohl immer rechnerisch als auch zeichnerisch Funktionsuntersuchungen gemacht werden können. Lineare Funktionen weisen ja auch, wie alle anderen Funktionen, bestimmte Merkmale/Charakteristika auf. So sind lineare Funktionen beispielsweise normalerweise linear steigend oder fallend (das kann man anhand der Funktionsgleichung ablesen) und sie haben einen Schnittpunkt mit der x- und y-Achse (das kann man beides rechnerisch bestimmen). Der Graph einer linearen Funktion ist hierbei eine Gerade – die dann ebenfalls alle Merkmale/Charakteristika aufweist, welche man rechnerisch bestimmt hat oder bestimmen kann. Aus diesem Grund sind im Fach Mathematik lineare Funktionen auch sehr wichtig, da sie zur Gänze bereits darlegen, was das Besondere an ihnen ist. Bei anderen Funktionen verhält es sich dann genauso. Weiterlesen

Please follow and like us:

Mathematik-Nachhilfe: Aufgaben zu quadratische Funktionen, Teil 3

Normalparabel in verschiedene Richtungen verschoben

Normalparabel in verschiedene Richtungen verschoben

Wie fit man in Mathe in Algebra ist, zeigt sich augenscheinlich bei dem Stoffgebiet quadratische Funktionen. Hier muss man nämlich schon teils schwierigere Termumformungen machen. Weist nämlich eine quadratische Funktion die Form f(x) = x² + px + q auf, dann kann man beispielsweise nicht sofort sagen, wie der Scheitelpunkt der Funktion ist. Hierfür muss man den Term der Funktion algebraisch in die sogenannte Scheitelpunktform umformen. Nur dann kann man schließlich den Scheitelpunkt der Funktion eindeutig bestimmen. Um diese wichtige Termumformung in Mathe korrekt durchzuführen, muss man aber auch die binomischen Formeln gut verinnerlicht haben, da die Scheitelpunktform einen Term darstellen – bestehend aus einer binomischenen Formel. Mathe ist daher alles andere als leicht, aber auch nicht superschwer – wenn man in diesem Fach immer am Ball bleibt! Weiterlesen

Please follow and like us:

Mathematik-Nachhilfe: Aufgaben zu linearen Funktionen, Teil 2

Neuigkeiten aus dem Mathe-Unterricht © Tim Reckmann PIXELIO www.pixelio.de

Neuigkeiten aus dem Mathe-Unterricht © Tim Reckmann PIXELIO www.pixelio.de

Als Schülerin und Schüler lernt man in Mathe als erste Funktionen lineare Funktionen kennen. „Das sind Geraden“, sagt ein emsiger Eleve, als er von seinen Eltern gefragt wird, was das sind. „Den Graph einer linearen Funktion nennt man Gerade“, antwortet der Lehrer bei einem Elternabend auf die gleiche Frage einer Elternhälfte. Der Lehrer muss das auch haargenau so sagen, denn die Darstellung einer linearen Funktion in einem Koordinatensystem ergibt eine Gerade. „Lineare Funktionen kann man aber nicht nur im Koordinatensystem darstellen“, ergänzt er weiter. „Lineare Funktionen weisen auch einen Funktionsterm auf, anhand dem man verschiedene Berechnungen machen kann – die auch wiederum an deren Graph ablesbar sind.“ „Aha“, hört man dann die Eltern sagen. Weiterlesen

Please follow and like us:

Betragsfunktionen

1. Allgemeins zu Betragsfunktionen

Bei einer Betragsfunktion weist der Term mit der Variablen Betragsstriche auf. Deshalb heißen solche Funktionen auch Betragsfunktionen, da dies deren Charakteristikum ist. Ein weiteres Merkmal bei Betragsfunktionen ist, dass man bei ihnen immer eine sogenannte Fallunterscheidung machen muss. Das liegt in der Besonderheit des Betrags begründet. Ein Betrag darf in Mathematik nämlich niemals negativ werden. Denn bei einem Betrag handelt es sich immer um ein Streckenverhältnis, das per se immer positiv ist. Mittels einer Fallunterscheidung wird das gewährleistet.

 

Die einfachste Betragsfunktion ist hierbei f(x) = ΙxΙ.

Man sagt auch, dass f(x) = ΙxΙ eine abschnittsweise lineare Funktion ist. Denn diese Funktion ist in einem bestimmten Intervall abschnittsweise linear.

Bei der Funktion f(x) = ΙxΙ gilt folgende Fallunterscheidung, da ja der Betrag niemals negativ werden darf:

f(x) = \left\{\begin{array}{rcl}\mathrm x~\mathrm{f\"ur}\in~\mathbb R^+_0&& \\-\mathrm x~\mathrm{f\"ur}\in~\mathbb R^-&& \end{array}\right.

Jeder reelen Zahl wird bei dieser Funktion ihr Betrag zugeordnet.

Es gilt hierfür auch folgende Zuordnungsvorschrift: f: x {\mapsto} ΙxΙ ; x ∈ \mathbb R

Die Betragsfunktion f(x) = ΙxΙ hat diesen Graphen:

Die Betragsfunktion f(x) = ΙxΙ

Die Betragsfunktion f(x) = ΙxΙ

Die Funktion f(x) = ΙxΙ ist nach dem Koordinatenursprung linear steigend und vor dem Koordinatenursprung linear fallend. Als Nullpunkt hat die Funktion die Koordinate N (0 Ι 0).

Please follow and like us:

Mathematik-Nachhilfe: Aufgaben zum Stoffgebiet Funktionen, Teil 4

Eine lineare Funktion als Graph dargestellt © Honina

Eine lineare Funktion als Graph dargestellt © Honina

Funktionen sind eindeutige Zuordnungen. Das ist ihr Charakteristikum. Ist das bei einer Funktion der Fall, dass eine eindeutige Zuordnung vorliegt, so kann man in Mathe hierzu einen Funktionsterm aufstellen. Dieser Funktionsterm gibt ganz allgemein die Zuordnung wieder. Man kann solch eine eindeutige Zuordnung jedoch nicht nur algebraisch durch einen Term bestimmen, sondern auch graphisch. Eine Funktion kann schließlich immer auch in ein Koordinatensystem eingezeichnet werden und ihr Verlauf sichtbar gemacht werden. Das nennt man den Graph einer Funktion. Daher kann man auch immer sowohl algebraisch als auch mittels eines Koordinatensystems eindeutig sagen, ob wirklich eine Funktion vorliegt – oder nicht. Es gibt in der Mathematik ja nicht nur Funktionen, das heißt, eindeutige Zuordnungen, sondern auch Relationen, uneindeutige Zuordnungen. Weiterlesen

Please follow and like us:

Mathematik-Nachhilfe: Aufgaben zu quadratischen Funktionen, Teil 2

Die Normalparabel

Die Normalparabel

Der bekannteste Graph einer quadratischen Funktion ist die sogenannte Normalparabel. Da es hierfür in Mathe extra eine Schablone gibt, kennt man die Normalparabel normalerweise sehr gut – und deren möglichen Verläufe im Koordinatensystem. Hierfür muss man sich zuvor nur die quadratischen Funktionen genau anschauen. Dann weiß man auch, wo man die Normalparabel im Koordinatensystem einzeichnen muss. Man orientiert sich hierbei an der Funktion y = x². Das stellt die nach oben geöffnete Normalparabel, vom Koordinatenursprung ausgehend, dar. Heißt die Funktion jedoch y = x² + 4, so muss man die Funktion um vier Längeneinheiten nach oben verschieben (entlang der y-Achse). Bei der Funktion y = (x – 4)² um vier Längeneinheiten nach rechts (entlang der x-Achse). Bei der Funktion y = (x – 4)² + 4 um vier Längeneinheiten nach rechts und vier Längeneinheiten nach oben. Weiterlesen

Please follow and like us:

Mathematik-Nachhilfe: Aufgaben zum Stoffgebiet Term, Teil 12

Gleichungen mit Termen © M. Großmann © Hofschlaeger PIXELIO www.pixelio.de

Gleichungen mit Termen © M. Großmann © Hofschlaeger PIXELIO www.pixelio.de

Der kleinste Grundbaustein einer Gleichung und einer Funktion ist ein Term. Gleichungen und Funktionen bestehen daher immer aus Termen bzw. aus Einzeltermen. Hierbei weist ein Term normalerweise immer eine Variable auf. Aber das ist nicht ein absolutes Muss. Ein Term kann auch keine Variable vorweisen, sprich eine „nackte“ Zahl sein. Bei einer Gleichung oder einer Funktion sind die Einzelterme stets mittels sinnvollen Rechenzeichen miteinander verbunden. Terme innerhalb einer Gleichung oder einer Funktion können daher mit einem „+“ mit einem „–“ oder mit einem „·oder auch mit einem „:“ (üblicherweise steht in Mathe statt einem „:“ eher ein Bruch) miteinander verbunden sein. Aber auch andere Mathematik-Symbole wie ein „²“ oder einer „\sqrt{}“ oder einem „Ι4Ι“ (und noch jede Menge andere) können hier auftreten – solange die Verknüpfung aus der Logik der Mathematik sinnvoll ist! Weiterlesen

Please follow and like us:

Mathematik-Nachhilfe: Aufgaben zu Potenzfunktionen, Teil 1

Zuckerwürfel, deren Volumen allesamt die Potenz 3 voweisen© sassi PIXELIO www.pixelio.de

Zuckerwürfel, deren Volumen allesamt die Potenz 3 voweisen© sassi PIXELIO www.pixelio.de

Funktionen, die nur eine Variable mit einer Potenz vorweisen, nennt man in der Mathematik Potenzfunktionen. Die einfachste hiervon auftretende Potenzfunktion kennt man daher bereits: y = x – die sogenannte erste Winkelhalbierende. Eine weitere kennt man aber bereits auch: y = x² – die sogenannte Normalparabel. Wie man sieht, ist man nicht vollkommen ahnungslos, wenn diese Funktionen in Mathe besprochen werden. Das ist doch schön! Je nachdem, ob nun die Potenz der Potenzfunktion gerade oder ungerade ist oder positiv oder negativ, unterscheiden sich ihre Graphen entschieden. Das ist das wichtigste Merkmal dieser Funktionen! Daher sollte man sich die Potenz der Potenzfunktion immer ganz genau anschauen. Weiterlesen

Please follow and like us:

Mathematik-Nachhilfe: Aufgaben zu quadratischen Funktionen, Teil 1

Normalparabel, Geodreieck und Lineal © Claudia Hautumm PIXELIO www.pixelio.de

Normalparabel, Geodreieck und Lineal © Claudia Hautumm PIXELIO www.pixelio.de

Nach linearen Funktionen werden im Fach Mathematik ausgiebig quadratische Funktionen behandelt. Der Funktionsterm von quadratischen Funktionen weist hierbei immer eine Variable mit der Potenz zwei (x²) auf. Den Graph solcher Funktionen nennt man eine Parabel. Weist eine quadratische Funktion vor dem x² keinen Faktor auf (außer natürlich den Faktor 1 😉 ), ist der Graph der Funktion immer eine sogenannte Normalparabel. Praktischerweise gibt es hierfür extra Normalparabel-Schablonen, mit denen man den Graph in Nullkommanix in ein Koordinatensystem einzeichnen kann. Quadratische Funktionen sind genauso wie linearen Funktionen in Mathe superwichtig. Diese beiden Funktionen bilden die Säulen der späteren Analysis, bei der über ein komplettes Schuljahr Funktionsuntersuchungen auf der Schülerinnen- und Schüler-Agenda stehen. Je besser man hierbei zuvor diese beiden Stoffgebiete verstanden hat, umso leichter fällt einem das „Mathematikfunktionsuntersuchungsschuljahr“. Weiterlesen

Please follow and like us:

Mathematik-Nachhilfe: Aufgaben zum Stoffgebiet Funktionen, Teil 3

Der Graph einer Betragsfunktion

Funktionen können in der Mathematik immer in einem Koordinatensystem dargestellt werden. Die Darstellung einer Funktion im Koordinatensystem nennt man den Graph der Funktion. Der Graphen einer Funktion kann hierbei einen ununterbrochen durchgängigen Verlauf vorweisen oder auch eine oder mehrere sogenannte Lücken haben. Eine Lücke stellt nämlich eine Stelle an einer Funktion dar, wo die Funktion nicht definiert ist. Bei der Funktionsgleichung einer Funktion kann man das bereits ebenso sehen, ob eine Funktion unterbrochen ist oder nicht. Besteht die Funktion beispielsweise aus einem Bruchterm, so weist deren Verlauf höchstwahrscheinlich eine oder mehrere Lücken auf. Ebenso zeigen sich Lücken bei der Definitionsmenge. Alle Zahlen, die bei der Definitionsmenge einer Funktion ausgeschlossen sind, sind Lücken bei deren Graphen. Weiterlesen

Please follow and like us: