Mathematik-Nachhilfe: Aufgaben zu linearen Ungleichungen, Teil 7

Die Kardinalregel bei Ungleichungen!!! © Thommy Weiss PIXELIO www.pixelio.de

Die Kardinalregel bei Ungleichungen!!! © Thommy Weiss PIXELIO www.pixelio.de

Die wichtigste Regel in Mathe beim Lösen von Ungleichungen ist (das gilt für lineare Ungleichungen und ebenso für alle anderen Ungleichungen): Bei einer Multiplikation mit einer negativen Zahl oder einer Division mit einer negativen Zahl dreht sich bei der Ungleichung das Ungleichheitszeichen um. Das ist superwichtig, es ist schließlich die Kardinalregel bei Ungleichungen. Macht man also z. B. ein „mal (–5)“ / „· (–5)“ so ändert sich beispielsweise das < hin zu >. Macht man hingegen ein „durch (–4)“ / „: (–4)“ so ändert sich ebenso beispielsweise das > hin zu <. Das sollte man bei Ungleichungen so schnell wie möglich verinnerlichen. Wendet man die Kardinalregel bei Ungleichungen nämlich nicht an – so ist auch die spätere Lösungsmenge definitiv falsch. Wenn man aber geschickt umformt, dann kann man sich einen Wechsel des Ungleichheitszeichens ersparen!

Weiterlesen

Please follow and like us:

Mathematik-Nachhilfe: Aufgaben zu linearen Ungleichungen, Teil 6

Schritt für Schritt © Jan Wattjes PIXELIO www.pixelio.de

Schritt für Schritt © Jan Wattjes PIXELIO www.pixelio.de

Bei linearen Ungleichungen gilt es, Schritt für Schritt – wie übrigens auch bei allen Stoffgebieten in Mathe – die Aufgabe zu lösen. Die einzelnen Lösungsschritte sind hierbei natürlich je nach Aufgabe verschieden. Das ist natürlich ebenfalls bei allen Mathematik-Stoffgebieten so! Es gibt aber immer bei jedem Stoffgebiet Standartaufgaben. Daher auch bei linearen Ungleichungen. Eine Standartaufgabe ist hier, dass eine komplette lineare Ungleichung dasteht und man diese lösen muss. Zunächst fasst man alle gleichen Einzelterme rechts und links des Ungleichheitszeichens zusammen. Dann separiert man den Einzelterm mit der Variablen von dem Einzelterm ohne die Variable. Steht schließlich die Variable alleine, d. h. nur mit der Zahl/dem Faktor 1 vor der Variablen, auf einer Seite der Ungleichung und auf der anderen Seite der Einzelterm ohne Variable – dann hat man die lineare Ungleichung gelöst. Weiterlesen

Please follow and like us:

Mathematik-Nachhilfe: Aufgaben zu linearen Ungleichungen, Teil 5

Zwei ''ungleiche'' Äpfel © Gitti Moser PIXELIO www.pixelio.de

Zwei “ungleiche“ Äpfel © Gitti Moser PIXELIO www.pixelio.de

Gegenüber Gleichungen weisen Ungleichungen nicht eine Lösung auf wie z. B. in Form einer Zahl oder mehrerer Zahlen, sondern einen Zahlenbereich. Das hat mit den unterschiedlichen Zeichen zu tun, das Gleichungen („=“) und Ungleichungen („>“, „<“, ebenso das „≥“ und das „≤“) vorweisen. Daduch muss sich ja auch logischerweise ein Unterschied ergeben – und das natürlich ganz besonders bei der Lösung. Bei der Lösungsmenge einer Ungleichung tritt daher auch in der Regel das Ungleichheits-Zeichen wieder auf, da nur so die Lösung der Ungleichung wiedergegeben werden kann. Bei einer Gleichung hingegen ist oftmals die Angabe einer Zahl oder mehrerer Zahlen möglich. Eine oder mehrere Zahlen stehen dann ja für (gleich/„=“) dem Ergebnis der Gleichung. Weiterlesen

Please follow and like us:

Mathematik-Nachhilfe: Aufgaben zu linearen Ungleichungen, Teil 4

Zwei ''ungleiche'' Wauwaus © Ruby Stein PIXELIO www.pixelio.de

Lineare Gleichungen stellen Gleichungen dar, die eine Variable oder mehrere Variablen vorweisen, die die Potenz 1 besitzen wie beispielsweise x + 7 = 0 oder 5x + 3x – 7 = 0. Bei linearen Ungleichungen verhält es sich genauso. Lineare Ungleichungen bestehen immer aus einer Variablen mit der Potenz 1 wie zum Beispiel x + 7 > 0 oder 5x + 3x > 0. Aufgrund des nahezu gleichen Aufbaus zu linearen Gleichungen löst man lineare Ungleichungen auch fast genauso auf. Das ist das Schöne an der Mathematik, es gibt viele Stoffgebiete, die mit einem anderen zusammenhängen. Obzwar man etwas Neues lernt, „fühlt“ sich das dann in Mathe oftmals wie bereits „gelernt“ an. Weiterlesen

Please follow and like us:

Mathematik-Nachhilfe: Aufgaben zu Ungleichungen, Teil 3

''Ungleicher'' Stapel von Steinen © twinlili PIXELIO www.pixelio.de

Bei Ungleichungen in Mathe ist eine Rechenregel überaus entscheidend! Diese lautet: Immer wenn man bei einer Ungleichung eine Multiplikation oder Division mit einer negativen Zahl durchführt, dann dreht sich das Vorzeichen der Ungleichung um. Hierbei handelt sich um eine Äquivalenzumformung. Alle anderen Lösungsschritte, die zur Lösung der Ungleichung führen, macht man genauso wie man das beim Lösen von Gleichungen bereits gelernt hat. Das ist sicherlich auch der Grund, warum Ungleichungen im Fach Mathematik heutzutage nur noch ein Randthema sind. Kann man nämlich Gleichungen lösen, so kann man auch Ungleichungen lösen – vorausgesetzt man beherzigt die einzige Ausnahme mit dem „Vorzeichen-Wechsel“ bei der Multiplikation und Division von negativen Zahlen. Weiterlesen

Please follow and like us:

Mathematik-Nachhilfe: Aufgaben zu Ungleichungen, Teil 2

Justitia © Florentine PIXELIO www.pixelio.de

Die Negation von etwas kann es doch nicht geben! Oder doch? Frosch und Nicht-Frosch. Zwerg und Nicht-Zwerg. Husten und Nicht-Husten. Bei Substantiven trifft das bei dem Negationspartikel „nicht“ sowohl als auch zu. Häh? Denn entweder es gibt das eine oder es gibt das eine nicht. Formallogisch gibt es aber beides. Lust und Unlust. Selbständigkeit und Unselbständigkeit. Echtheit und Unechtheit. Bei der Vorsilbe „un“, die das Gegenteil von etwas zum Ausdruck bringt, ist das ebenso der Fall. Beide Partikel bringen etwas zum Ausdruck, das das Gegenteil von etwas Bestimmten ist und deshalb das ursprünglich Gemeinte negiert. Daher ist eine Ungleichung definitiv keine Gleichung!!! Sie ist nämlich eine Nicht-Gleichung bzw. eine Un-Gleichung. Dennoch gibt es in Mathematik zweifelsohne Ungleichungen. Formallogisch wäre daher nun ein für allemal geklärt, dass eine Ungleichung genauso wie alles andere, was ein Negationspartikel als Wortbestandteil hat, zwar das Gegenteil von etwas ist, aber dennoch existiert. Ein Nicht-Mathe-Thema wäre hier auch ein für allemal geklärt. 🙂

Weiterlesen

Please follow and like us:

Mathematik-Nachhilfe: Aufgaben zu Ungleichungen, Teil 1

Ungleiche Verhältnisse zwischen Chef und Arbeiter © Dr. Klaus-Uwe Gerhardt PIXELIO www.pixelio.de

Neben Gleichungen gibt es in Mathematik noch sogenannte Ungleichungen. Wie der Name es schon vermuten lässt, unterscheiden sich hierbei Ungleichungen offenbar fundamental von Gleichungen, da die Vorsilbe „un“ im Deutschen immer eine Negation ausdrückt – und das demzufolge hier auch der Fall ist. Daher sind Ungleichungen definitiv keine Gleichungen – aber auch nicht komplett das Gegenteil davon.

Der zentrale Unterschied ist im Prinzip das Zeichen, das bei Ungleichungen auftritt. Denn bei einer Ungleichung wird normalerweise entweder ein „>“/„größer als“ oder ein „<“/„kleiner als“ verwendet anstatt wie bei einer Gleichung ein „=“/„gleich“. Dadurch gibt es auch im Gegensatz zu einer Gleichung niemals als Lösungsmenge eine einzige Lösung.

Bei der Ermittlung der Lösungsmenge gibt es aber eine signifikante Übereinstimmung zu Gleichungen. Sowohl Gleichungen als auch Ungleichungen löst man nämlich primär über Äquivalenzumformungen. Weiß man daher wie Äquivalenzumformungen in Mathe richtig gemacht werden, so kann man im Prinzip auch schon Ungleichungen lösen. Das ist doch super, so ökonomisch für die grauen Zellen kann nämlich Mathe auch sein! Weiterlesen

Please follow and like us:

Ungleichungen

Siegertreppchen © Ute Pelz PIXELIO www.pixelio.de

1. Grundlegendes zu Ungleichungen

In der Grundschule hat man normalerweise die Bedeutung und die richtige Handhabung des Zeichens „>“/„größer als“ und des Zeichens „<“/„kleiner als“ intensiv gelernt. Daher weiß man, wenn eine Zahl größer als die andere ist, dass man hierfür als Zeichen das „>“ verwendet. Bei den Zahlen 5 und 12 wird man daher sofort in der Sprache der Mathematik ausgedrückt schreiben können: 12 > 5. Ebenso weiß man sofort, wenn eine Zahl kleiner als eine andere Zahl ist, dass man dann das Zeichen „<“ hierfür verwendet. Bei den Zahlen 6 und 9 kann man deshalb sofort mathematisch wiedergeben: 6 < 9.

Das „>“/„größer als“ und das „<“/„kleiner als“ verwendet man daher in Mathe immer, wenn zwei Zahlen, die man miteinander vergleicht, nicht gleich sind. Wären die beiden Zahlen nämlich gleich, so würde man das hierfür in Mathematik gängige Zeichen benutzen, das „=“/„gleich“. Denn unstrittig wird jeder nicht auf den Kopf gefallene Mensch zustimmend nämlich Folgendes mathematisch wiedergeben, wenn man die Zahl 7 mit der Zahl 7 vergleicht: 7 = 7.

In der Mathematik kann man nun das „>“/„größer als“ und das „<“/„kleiner als“ genauso wie das „=“/„gleich“ nicht nur bei dem Vergleich von Zahlen verwenden, sondern auch im Zusammenhang mit Variablen und Termen. Verwendet man nun einen Term zusammen mit einem „>“/„größer als“ oder „<“/„kleiner als“, so liegt in der Mathematik eine sogenannte Ungleichung vor. Benutzt man hingegen das „=“/„gleich“, dann liegt hingegen eine Gleichung vor.

Beispiele für Ungleichungen mit einer Variablen, die jeweils die Potenz „hoch 1″ vorweisen:

  1. x + 2 > 5
  2. 3x > 2
  3. 8x + 3 < 12
  4. 7x – 21 > 12x + 9
  5. –23x – 9 < 18x – 11

 

2. Die Bestimmung der Lösungsmenge einer Ungleichung

2.1 Ein bestimmter Zahlenbereich als Lösungsmenge

Die Lösungsmenge einer Ungleichung ermittelt man genauso wie bei einer Gleichung fast ausschließlich über Äquivalenzumformungen.

x + 2 > 5      | – 2

x > 3

L = {x | x > 3}

Die Lösungsmenge hier würde in Worten lauten: die Menge aller x, für die gilt, dass jedes x größer 3 eine Lösung der Ungleichung ist.

Im Vergleich zu Gleichungen unterscheidet sich aber bei Ungleichungen deren Lösungsmenge. Denn im Gegensatz zu Gleichungen liegt hier oft ein Zahlenbereich als Lösung vor.

Zahlenbereich > 3 auf Zahlengeraden dargestellt

 

2.2 Keine Lösung bei einer Ungleichung

Eliminiert sich das x innerhalb der Ungleichung, so kann die Lösungsmenge genau wie bei einer Gleichung entweder die leere Menge/{ } bzw. {\varnothing} sein oder die Menge aller Zahlen/{\mathbb Q} oder {\mathbb R}.

x + 7 < x      | – x

7 < 0

L = { } bzw. {\varnothing}

Wie das Ergebnis nach der Elimination der Variablen x zeigt, bleibt die widersprüchliche Aussage stehen, dass 7 kleiner 0 ist. Daher gibt es hier für die Ungleichung keine Lösung.

 

2.3 Unendlich viele Lösungen bei einer Ungleichung

x + 4 > x      | – x

4 > 0

L = {\mathbb Q} oder {\mathbb R} (je nach Klassenstufe)

Nach der Elimination der Variable ergibt sich hier als Ergebnis die Aussage, dass 4 größer 0 ist. Diese Aussage ist immer wahr. Daher gibt es für die Ungleichung hier unendlich viele Lösungen.

 

2.4 Ein bestimmter Zahlenbereich als Lösungsmenge bei einer Ungleichung der Form „≥“/„≤“

Neben dem bei einer Ungleichung normalerweise verwendeten Zeichen „>“/„größer als“ und „<“/„kleiner als“ können auch noch diese Zeichen vorkommen: „≥“/„größer gleich“ und „≤“/„kleiner gleich“. Besteht nun eine Ungleichung aus einem „≥“ oder „≤“, so sieht deren Lösungsmenge in der Regel geringfügig anders aus, als dies bei einer reinen Ungleichung der Fall wäre. Denn ein kleiner Unterschied kommt hier hinzu, wenn ein bestimmter Zahlenbereich als Lösungsmenge vorliegt.

x + 7 ≥ 14      | – 7

x ≥ 7

L = {x | x ≥ 7}

Die Lösungsmenge lautet hier in Worten ausgedrückt: die Menge alle x, für die gilt, dass jedes x größer 7 und x gleich 7 eine Lösung der Ungleichung ist.

Zahlenbereich ≥ 7auf Zahlengeraden dargestellt

 


2.5 Keine Lösung bei einer Ungleichung der Form „≥“/„≤“

Keine Lösung liegt bei einer Ungleichung mit der Form „≥“/„≤“ genauso vor wie bei einer reinen Ungleichung, und zwar, wenn sich die Variable eliminiert, das Ergebnis aber widersprüchlich ist.

x + 2 ≤ x      | – x

2 ≤ 0

L = { } bzw. {\varnothing}

Da 2 niemals „kleiner gleich“ 0 ist, gibt es für die Ungleichung hier keine Lösung.

 

2.6 Unendlich viele Lösungen bei einer Ungleichung der Form „≥“/„≤“

Ungleichungen der Form „≥“/„≤“ liefern wie reine Ungleichungen genauso immer dann unendlich viele Lösungen, wenn sich zum einen die Variable eliminiert und zum anderen eine wahre Aussage entsteht.

x + 9 ≥ x      | – x

9 ≥ 0

L = {\mathbb Q} oder {\mathbb R} (je nach Klassenstufe)

Da 9 „größer gleich“ 0 immer eine wahre Aussage der Ungleichung ist, gibt es hier unendlich viele Lösungen.

 

3. Das Umdrehen des Ungleichheitszeichens bei Ungleichungen

Die Äquivalenzumformungen bei Ungleichungen weisen eine Besonderheit auf, die es stets zu beachten gilt, und zwar das Umdrehen des Ungleichungszeichen bei einer Multiplikation oder Division mit einer negativen Zahl.

1. Beispiel

5x + 5 > 11 – x      | + x

6x + 5 > 11            | – 5

6x > 6                    | : 6

x > 1

L = {x | x > 1}

Führt man bei einer Ungleichung, egal ob eine reine oder nicht, Äquivalenzumformungen mittels einer Addition/„+“, Subtraktion/„– “ oder Multiplikation/„·„eine Division/„:“ mit einer positiven Zahl durch, so bleibt die ursprüngliche Stellung des Ungleichheitszeichens stets gleich.

2. Beispiel

4x + 3 > 9 + 5x      | – 5x

–x + 3 > 9              | – 3

–x > 6                    | · (–1)

x < –6

L = {x | x < –6}

Führt man bei einer Ungleichung eine Äquivalenzumformung durch, bei der eine Multiplikation mit einem negativen Vorzeichen vorkommt, so dreht sich die ursprüngliche Stellung des Ungleichungszeichens um.

3. Beispiel

–x > 6      | : (–1)

x < –6

L = {x | x < –6}

Das Gleiche gilt bei einer Division mit einer negativen Zahl. Auch hier dreht sich die ursprüngliche Stellung des Ungleichszeichens um.

Please follow and like us: